27 research outputs found
Ultra-low contact resistance in graphene devices at the Dirac point
Contact resistance is one of the main factors limiting performance of short-channel graphene field-effect transistors (GFETs), preventing their use in low-voltage applications. Here we investigated the contact resistance between graphene grown by chemical vapor deposition (CVD) and different metals, and found that etching holes in graphene below the contacts consistently reduced the contact resistance, down to 23 Omega . mu m with Au contacts. This low contact resistance was obtained at the Dirac point of graphene, in contrast to previous studies where the lowest contact resistance was obtained at the highest carrier density in graphene (here 200 Omega . mu m was obtained under such conditions). The 'holey' Au contacts were implemented in GFETs which exhibited an average transconductance of 940 S m(-1) at a drain bias of only 0.8 V and gate length of 500 nm, which out-perform GFETs with conventional Au contacts
No Cytotoxicity or Genotoxicity of Graphene and Graphene Oxide in Murine Lung Epithelial FE1 Cells in Vitro
International audienceGraphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon-based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in-depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2-3 graphene layers with lateral sizes of 1-2 mu m. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few-layered GO and rGO with comparable lateral size (> 1 mu m) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5-200 mu g/ml). Environ. Mol. Mutagen. 57:469-482, 2016. (c) 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc
Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide
We investigated toxicity of 2-3 layered >1 ÎĽm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 ÎĽg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis
Laser-induced backward transfer of monolayer graphene
Laser-induced backward transfer (LIBT) has been demonstrated as a viable technique for precise, localised deposition of microscale regions of graphene. Single femtosecond laser pulses, shaped spatially using a digital micromirror device (DMD), were incident on a pre-prepared sample of graphene-coated nickel (the donor substrate) through a transparent glass receiver substrate. Under optimal laser exposure conditions, and in a low-pressure gas environment, circular regions of graphene with approximately 30 µm diameter were successfully transferred from the donor to the receiver substrate as confirmed by optical and electron microscopy and Raman spectroscopy. The hypothesis that rapid thermal expansion of the nickel could drive the transfer process is explored and is shown to be plausible through some simple calculations. This LIBT technique for transfer of this archetypal 2D material has many potential applications in photonic and MEMS device fabrication
Dataset: Laser-Induced Backward Transfer of Monolayer Graphene
Dataset relating to the journal article 'Laser-Induced Backward Transfer of Monolayer Graphene' , published in Applied Surface Science.</span
Spectral-Phase Interferometry Detection of Ochratoxin A via Aptamer-Functionalized Graphene Coated Glass
In this work, we report a novel method of label-free detection of small molecules based on direct observation of interferometric signal change in graphene-modified glasses. The interferometric sensor chips are fabricated via a conventional wet transfer method of CVD-grown graphene onto the glass coverslips, lowering the device cost and allowing for upscaling the sensor fabrication. For the first time, we report the use of graphene functionalized by the aptamer as the bioreceptor, in conjunction with Spectral-Phase Interferometry (SPI) for detection of ochratoxin A (OTA). In a direct assay with an OTA-specific aptamer, we demonstrated a quick and significant change of the optical signal in response to the maximum tolerable level of OTA concentration. The sensor regeneration is possible in urea solution. The developed platform enables a direct method of kinetic analysis of small molecules using a low-cost optical chip with a graphene-aptamer sensing layer
Spectral-Phase Interferometry Detection of Ochratoxin A via Aptamer-Functionalized Graphene Coated Glass
In this work, we report a novel method of label-free detection of small molecules based on direct observation of interferometric signal change in graphene-modified glasses. The interferometric sensor chips are fabricated via a conventional wet transfer method of CVD-grown graphene onto the glass coverslips, lowering the device cost and allowing for upscaling the sensor fabrication. For the first time, we report the use of graphene functionalized by the aptamer as the bioreceptor, in conjunction with Spectral-Phase Interferometry (SPI) for detection of ochratoxin A (OTA). In a direct assay with an OTA-specific aptamer, we demonstrated a quick and significant change of the optical signal in response to the maximum tolerable level of OTA concentration. The sensor regeneration is possible in urea solution. The developed platform enables a direct method of kinetic analysis of small molecules using a low-cost optical chip with a graphene-aptamer sensing layer