305 research outputs found

    Autoimmune and infectious skin diseases that target desmogleins

    Get PDF
    Desmosomes are intercellular adhesive junctions of epithelial cells that contain two major transmembrane components, the desmogleins (Dsg) and desmocollins (Dsc), which are cadherin-type cell–cell adhesion molecules and are anchored to intermediate filaments of keratin through interactions with plakoglobin and desmoplakin. Desmosomes play an important role in maintaining the proper structure and barrier function of the epidermis and mucous epithelia. Four Dsg isoforms have been identified to date, Dsg1–Dsg4, and are involved in several skin and heart diseases. Dsg1 and Dsg3 are the two major Dsg isoforms in the skin and mucous membranes, and are targeted by IgG autoantibodies in pemphigus, an autoimmune disease of the skin and mucous membranes. Dsg1 is also targeted by exfoliative toxin (ET) released by Staphylococcus aureus in the infectious skin diseases bullous impetigo and staphylococcal scalded skin syndrome (SSSS). ET is a unique serine protease that shows lock and key specificity to Dsg1. Dsg2 is expressed in all tissues possessing desmosomes, including simple epithelia and myocardia, and mutations in this gene are responsible for arrhythmogenic right ventricular cardiomyopathy/dysplasia. Dsg4 plays an important adhesive role mainly in hair follicles, and Dsg4 mutations cause abnormal hair development. Recently, an active disease model for pemphigus was generated by a unique approach using autoantigen-deficient mice that do not acquire tolerance against the defective autoantigen. Adoptive transfer of Dsg3−/− lymphocytes into mice expressing Dsg3 induces stable anti-Dsg3 IgG production with development of the pemphigus phenotype. This mouse model is a valuable tool with which to investigate immunological mechanisms of harmful IgG autoantibody production in pemphigus. Further investigation of desmoglein molecules will continue to provide insight into the unsolved pathophysiological mechanisms of diseases and aid in the development of novel therapeutic strategies with minimal side effects

    The desmosomal cadherin desmoglein-3 acts as a keratinocyte anti-stress protein via suppression of p53

    Get PDF
    Desmoglein-3 (Dsg3), the Pemphigus Vulgaris (PV) antigen (PVA), plays an essential role in keratinocyte cell–cell adhesion and regulates various signaling pathways involved in the progression and metastasis of cancer where it is upregulated. We show here that expression of Dsg3 impacts on the expression and function of p53, a key transcription factor governing the responses to cellular stress. Dsg3 depletion increased p53 expression and activity, an effect enhanced by treating cells with UVB, mechanical stress and genotoxic drugs, whilst increased Dsg3 expression resulted in the opposite effects. Such a pathway in the negative regulation of p53 by Dsg3 was Dsg3 specific since neither E-cadherin nor desmoplakin knockdown caused similar effects. Analysis of Dsg3−/− mouse skin also indicated an increase of p53/p21WAF1/CIP1 and cleaved caspase-3 relative to Dsg3+/− controls. Finally, we evaluated whether this pathway was operational in the autoimmune disease PV in which Dsg3 serves as a major antigen involved in blistering pathogenesis. We uncovered increased p53 with diffuse cytoplasmic and/or nuclear staining in the oral mucosa of patients, including cells surrounding blisters and the pre-lesional regions. This finding was verified by in vitro studies where treatment of keratinocytes with PV sera, as well as a characterized pathogenic antibody specifically targeting Dsg3, evoked pronounced p53 expression and activity accompanied by disruption of cell–cell adhesion. Collectively, our findings suggThe study was supported by the Barts and The London School of Medicine and Dentistry and Guizhou Medical University, China. The animal work was supported by Deutsche Forschungsgemeinschaft (TR-SFB 156). Jutamas Uttagomol was supported by a scholarship from Naresuan University, Thailand

    Non-classical forms of pemphigus: pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus

    Get PDF
    The pemphigus group comprises the autoimmune intraepidermal blistering diseases classically divided into two major types: pemphigus vulgaris and pemphigus foliaceous. Pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus are rarer forms that present some clinical, histological and immunopathological characteristics that are different from the classical types. These are reviewed in this article. Future research may help definitively to locate the position of these forms in the pemphigus group, especially with regard to pemphigus herpetiformis and the IgG/ IgA pemphigus.Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology DepartmentUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology and Pathology DepartmentsUNIFESP, EPM, Dermatology DepartmentUNIFESP, EPM, Dermatology and Pathology DepartmentsSciEL

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required

    Efficient integration of transgenes into a defined locus in human embryonic stem cells

    Get PDF
    Random integration is one of the more straightforward methods to introduce a transgene into human embryonic stem (ES) cells. However, random integration may result in transgene silencing and altered cell phenotype due to insertional mutagenesis in undefined gene regions. Moreover, reliability of data may be compromised by differences in transgene integration sites when comparing multiple transgenic cell lines. To address these issues, we developed a genetic manipulation strategy based on homologous recombination and Cre recombinase-mediated site-specific integration. First, we performed gene targeting of the hypoxanthine phosphoribosyltransferase 1 (HPRT) locus of the human ES cell line KhES-1. Next, a gene-replacement system was created so that a circular vector specifically integrates into the targeted HPRT locus via Cre recombinase activity. We demonstrate the application of this strategy through the creation of a tetracycline-inducible reporter system at the HPRT locus. We show that reporter gene expression was responsive to doxycycline and that the resulting transgenic human ES cells retain their self-renewal capacity and pluripotency

    Desmoglein 3, via an Interaction with E-cadherin, Is Associated with Activation of Src

    Get PDF
    Desmoglein 3 (Dsg3), a desmosomal adhesion protein, is expressed in basal and immediate suprabasal layers of skin and across the entire stratified squamous epithelium of oral mucosa. However, increasing evidence suggests that the role of Dsg3 may involve more than just cell-cell adhesion.To determine possible additional roles of Dsg3 during epithelial cell adhesion we used overexpression of full-length human Dsg3 cDNA, and RNAi-mediated knockdown of this molecule in various epithelial cell types. Overexpression of Dsg3 resulted in a reduced level of E-cadherin but a colocalisation with the E-cadherin-catenin complex of the adherens junctions. Concomitantly these transfected cells exhibited marked migratory capacity and the formation of filopodial protrusions. These latter events are consistent with Src activation and, indeed, Src-specific inhibition reversed these phenotypes. Moreover Dsg3 knockdown, which also reversed the decreased level of E-cadherin, partially blocked Src phosphorylation.Our data are consistent with the possibility that Dsg3, as an up-stream regulator of Src activity, helps regulate adherens junction formation

    Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor

    Get PDF
    Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1–/– skin showed a delay in expression of adhesion/differentiation/ keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17–skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1–/– mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients
    corecore