19 research outputs found

    Effects of Goat Manure Fertilization on Grain Nutritional Value in Two Contrasting Quinoa (Chenopodium quinoa Willd.) Varieties Cultivated at High Altitudes

    Get PDF
    In this study, the effects of goat manure fertilization (2, 4, 8, and 12 Tn/ha) on the grain yield, organic compounds, and mineral composition of two quinoa varieties (CICA-17 and Regalona Baer) were evaluated under field conditions in Northwest Argentina. The results indicate that fertilization improved the quinoa grain yield and total protein content. Low manure doses positively affected the fatty acid (FA) profile, and significant changes were determined for the monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acid contents of CICA-17 and on the saturated fatty acid (SFA) contents of R. Baer seeds. The amino acid contents were positively affected in CICA-17 and negatively in R. Baer. Soluble sugars (glucose, fructose, and sucrose), major elements (K, Si, P, Mg, Ca, and Na), minor elements (Fe, Mn, Al, Zn, and Cu), and ultratrace elements (Cr and Li) were detected and discussed in terms of their impact on human nutrition and health. Conclusively, manure addition affected some essential amino acids, the desaturase activity, the n6:n3 and SFA/UFA ratios, the atherogenic index, soluble sugars, and mineral content, and the fatty acid metabolism of each variety was differently affected, especially the C16 and C18 desaturase activity, which responded differently to various manure doses. Manure addition is a promising alternative to improve the nutritional quality and functionality of quinoa grains, but the response is not linear.EEA FamailláFil: González, Juan A. Fundación Miguel Lillo. Instituto de Ecología, Comportamiento y Conservación; ArgentinaFil: Yousif, Sawsan K.M. Al-Baha University. College of Arts and Science in Baljurashi. Department of Chemistry; Arabia SauditaFil: Erazzu, Luis Ernesto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Erazzu, Luis Ernesto. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Martinez Calsina, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Lizarraga, Emilio. Fundación Miguel Lillo. Instituto de Fisiología Animal; ArgentinaFil: Lizarraga, Emilio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Omer, Rihab M. Al-Baha University. College of Arts and Science in Baljurashi. Department of Chemistry; Arabia SauditaFil: Bazile, D. CIRAD, UMR SENS; FranciaFil: Bazile, D. University Paul Valery Montpellier 3. CIRAD, IRD; FranciaFil: Fernandez-Turiel, J.L. CSIC. Geosciences Barcelona; EspañaFil: Buedo, Sebastián E. Fundación Miguel Lillo. Instituto de Ecología, Comportamiento y Conservación; ArgentinaFil: Rejas, M. CSIC. Geosciences Barcelona; EspañaFil: Fontana, Paola Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: González, D.A. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV); ArgentinaFil: González, D.A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV); ArgentinaFil:Oviedo, A. Fundación Miguel Lillo. Instituto de Fisiología Animal; ArgentinaFil: Alzuaibr, Fahad Mohammed. University of Tabuk. Faculty of Science. Department of Biology; Arabia SauditaFil: Al-Qahtani, Salem Mesfer. University of Tabuk. University College of Tayma. Biology Department; Arabia SauditaFil: Al-Harbi, Nadi Awad. University of Tabuk. University College of Tayma. Biology Department; Arabia SauditaFil: Ibrahim, Mohamed F.M. Ain Shams University. Faculty of Agriculture. Department of Agricultural Botany; EgiptoFil: Van Nieuwenhove, Carina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Van Nieuwenhove, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos. Laboratorio de Ecofisiología Tecnológica; Argentin

    Effects of Goat Manure Fertilization on Grain Nutritional Value in Two Contrasting Quinoa (Chenopodium quinoa Willd.) Varieties Cultivated at High Altitudes

    Get PDF
    In this study, the effects of goat manure fertilization (2, 4, 8, and 12 Tn/ha) on the grain yield, organic compounds, and mineral composition of two quinoa varieties (CICA-17 and Regalona Baer) were evaluated under field conditions in Northwest Argentina. The results indicate that fertilization improved the quinoa grain yield and total protein content. Low manure doses positively affected the fatty acid (FA) profile, and significant changes were determined for the monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acid contents of CICA-17 and on the saturated fatty acid (SFA) contents of R. Baer seeds. The amino acid contents were positively affected in CICA-17 and negatively in R. Baer. Soluble sugars (glucose, fructose, and sucrose), major elements (K, Si, P, Mg, Ca, and Na), minor elements (Fe, Mn, Al, Zn, and Cu), and ultratrace elements (Cr and Li) were detected and discussed in terms of their impact on human nutrition and health. Conclusively, manure addition affected some essential amino acids, the desaturase activity, the n6:n3 and SFA/UFA ratios, the atherogenic index, soluble sugars, and mineral content, and the fatty acid metabolism of each variety was differently affected, especially the C16 and C18 desaturase activity, which responded differently to various manure doses. Manure addition is a promising alternative to improve the nutritional quality and functionality of quinoa grains, but the response is not linear

    USE OF NANOMATERIALS IN INDUCING TOLERANCE AGAINST WATER STRESS IN FAVA BEAN (VICIA FABA L.) PLANTS GROWN IN TABUK REGION

    No full text
    In the past decade nanomaterials (NMs) have emerged as important tools for manipulating growth and yield of crop plants. Of these NMs, nano-titanium dioxide (nano-TiO2) has been shown to play various roles in growth and development of crop plants under abiotic stresses. Present work was carried out to evaluate the role nano-TiO2 in the protection of plants against water stress (WS) and to select the best of nano-TiO2. The results show that WS caused a significant reduction in growth attributes, chlorophyll (Chl) content, leaf relative water content (LRWC) and activity of nitrate reductase (NR) enzyme. Whereas, an increase was noticed in reactive oxygen species (ROS), carbonic anhydrase (CA) activity, electrolyte leakage, and lipid peroxidation in water stressed plants. In addition, plants under WS also showed an increase in the activities of antioxidant enzymes and accumulation of proline (Pro) and glycine betaine (GB) content. However, application of nano-TiO2 (5, 10, 15, and 20 mg L-1) to water-stressed plants further enhanced the activities of antioxidant enzymes, CA activity, and Pro and GB content. Nano-TiO2-induced increase in ROS, CA, Pro and GB resulted in a decrease in ROS level, electrolyte leakage and lipid peroxidation leading to increase in LRWC, Chl content, NR activity and growth of the plants. Furthermore, an additional increase in the level of nano-TiO2 to 25 mg L-1 could not alleviate water stress and showed adverse effects. Keywords: Antioxidant system, Nanomaterials, Titanium dioxide, Vicia faba, Water stres

    Growth response of cowpea (Vigna unguiculata L.) exposed to Pseudomonas fluorescens, Pseudomonas stutzeri, and Pseudomonas gessardii in lead contaminated soil

    No full text
    Lead (Pb) is a major contaminant among heavy metals in the soil environment that has negative impacts on the growth of plants, which ultimately cause health risk via entering into the food chain. In this regard, plant growth promoting rhizobacteria (PGPR) might improve plant growth by counteracting the harmful effects of Pb stress. Therefore, the present pot study was conducted to evaluate the role of PGPR in improving the growth of cowpea in Pb-contaminated soil. Three different concentrations of Pb (250, 350, and 750 mg kg−1) were applied alone (control) and in combination with bacterial inoculums [S1 (Pseudomonas fluorescens), S2 (Pseudomonas stutzeri) and S3 (Pseudomonas gessardii)] using completely randomized design each with three replicates. Results showed that plant fresh weight, plant dry weight, shoot length, root length, and chlorophyll contents of cowpea plants were improved significantly (P ≤ 0.05) by applying bacterial isolates as compared to the un-inoculated contaminated control. Among bacterial isolates, S3 performed better as compared to other bacterial isolates. The maximum increase in plant fresh weight, plant dry weight, shoot length, root length, and chlorophyll content was observed under S3 bacterial strain. Bacterial inoculation also enhanced the Pb concentration in the plant and the maximum uptake was recorded under S3 bacterial strain at 750 mg kg−1. Consequently, it has been concluded that PGPR has the great potential to enhance the plant growth and physiological characteristics of cowpea in Pb-contaminated sites and can also be used for bioremediation purposes

    Hydrogen Sulfide-Mediated Activation of <i>O</i>-Acetylserine (Thiol) Lyase and <span style="font-variant: small-caps">l</span>/<span style="font-variant: small-caps">d</span>-Cysteine Desulfhydrase Enhance Dehydration Tolerance in <i>Eruca sativa</i> Mill

    No full text
    Hydrogen sulfide (H2S) has emerged as an important signaling molecule and plays a significant role during different environmental stresses in plants. The present work was carried out to explore the potential role of H2S in reversal of dehydration stress-inhibited O-acetylserine (thiol) lyase (OAS-TL), l-cysteine desulfhydrase (LCD), and d-cysteine desulfhydrase (DCD) response in arugula (Eruca sativa Mill.) plants. Dehydration-stressed plants exhibited reduced water status and increased levels of hydrogen peroxide (H2O2) and superoxide (O2&#8226;&#8722;) content that increased membrane permeability and lipid peroxidation, and caused a reduction in chlorophyll content. However, H2S donor sodium hydrosulfide (NaHS), at the rate of 2 mM, substantially reduced oxidative stress (lower H2O2 and O2&#8226;&#8722;) by upregulating activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and increasing accumulation of osmolytes viz. proline and glycine betaine (GB). All these, together, resulted in reduced membrane permeability, lipid peroxidation, water loss, and improved hydration level of plants. The beneficial role of H2S in the tolerance of plants to dehydration stress was traced with H2S-mediated activation of carbonic anhydrase activity and enzyme involved in the biosynthesis of cysteine (Cys), such as OAS-TL. H2S-treated plants showed maximum Cys content. The exogenous application of H2S also induced the activity of LCD and DCD enzymes that assisted the plants to synthesize more H2S from accumulated Cys. Therefore, an adequate concentration of H2S was maintained, that improved the efficiency of plants to mitigate dehydration stress-induced alterations. The central role of H2S in the reversal of dehydration stress-induced damage was evident with the use of the H2S scavenger, hypotaurine

    Development of New Iso-Cytoplasmic Rice-Restorer Lines and New Rice Hybrids with Superior Grain Yield and Grain Quality Characteristics by Utilizing Restorers&rsquo; Fertility Genes

    No full text
    This research was carried out at the Experimental Farm of Sakha Agricultural Research Station, Sakha, Kafr El-Sheikh, Egypt, during the 2018&ndash;2020 rice-growing seasons to develop and evaluate four iso-cytoplasmic rice-restorer lines: NRL79, NRL80, NRL81, and NRL82, as well as Giza 178, with ten new hybrids in order to estimate genotypic coefficient, phenotypic coefficient, heritability in a broad sense, and advantage over Giza 178 as a check variety (control) of new restorer lines. This study also estimated combining ability, gene action, better-parent heterosis (BP), mid-parents heterosis (MP), and standard heterosis (SH) over Egyptian Hybrid one (IR69A &times; Giza 178) as a check hybrid (control) for grain yield, agronomic traits, and some grain quality characters in restorer lines and hybrids. The percentage of advantage over commercial-variety Giza 178 (check) was significant, and highly significant among the newly developed restorer fertility lines for all the studied traits. This indicates that the selection is a highly effective factor in improving these traits. New restorer fertility lines showed highly significant positive values over commercial restorer for grain yield; the values ranged from 51% for NRL80 to 100.4% for NRL82, respectively. Meanwhile, in regard to the grain shape of paddy rice, three lines of the promising lines showed highly significant negative desirable values compared with Giza 178; the values ranged from &minus;7.7% for the NRL80 to &minus;15.2% for NRL79, respectively. Based on the superiority of the new lines, the new lines can be used as new restorer fertility lines to breed promising new hybrids and new inbred rice lines or varieties. From the results of the testcross experiment, the four promising lines were identified as effective restorer fertility lines for two cytoplasmic male sterile (CMS) lines. Moreover, the six rice hybrids showed values for SH heterosis of grain yield/plant of more than 15% over the check hybrid variety, with high values of 1000-grain weight and desirable grain shape; these hybrids were G46A &times; NRL81 (125.1%), G46A &times; NRL80 (66.9%), IR69A &times; NRL79 (47.2%), G46A &times; NRL79 (24.6%), IR69A &times; NRL81 (23.4%), and IR69A &times; NRL82 (16.2%)

    The Expression of <i>Triticum aestivum</i> Cysteine-Rich Receptor-like Protein Kinase Genes during Leaf Rust Fungal Infection

    No full text
    Understanding the role of cysteine-rich receptor-like kinases (CRKs) in plant defense mechanisms is crucial for enhancing wheat resistance to leaf rust fungus infection. Here, we identified and verified 164 members of the CRK gene family using the Triticum aestivum reference version 2 collected from the international wheat genome sequencing consortium (IWGSC). The proteins exhibited characteristic features of CRKs, including the presence of signal peptides, cysteine-rich/stress antifungal/DUF26 domains, transmembrane domains, and Pkinase domains. Phylogenetic analysis revealed extensive diversification within the wheat CRK gene family, indicating the development of distinct specific functional roles to wheat plants. When studying the expression of the CRK gene family in near-isogenic lines (NILs) carrying Lr57- and Lr14a-resistant genes, Puccinia triticina, the causal agent of leaf rust fungus, triggered temporal gene expression dynamics. The upregulation of specific CRK genes in the resistant interaction indicated their potential role in enhancing wheat resistance to leaf rust, while contrasting gene expression patterns in the susceptible interaction highlighted potential susceptibility associated CRK genes. The study uncovered certain CRK genes that exhibited expression upregulation upon leaf rust infection and the Lr14a-resistant gene. The findings suggest that targeting CRKs may present a promising strategy for improving wheat resistance to rust diseases

    The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials

    No full text
    Traditional mulch material (farmyard manure) has long been used in agriculture. However, recent developments have also introduced the scientific community and farmers to advanced chemicals such as potassium polyacrylamide (KPAM), which has revolutionised the concept of the soil water-holding capacity to many compared with other materials being used. To compare the effect of different organic and inorganic soil amendment materials under water stress conditions, a two-year (2018 and 2019) field study was conducted. The main plots consisted of irrigation treatments, i.e., I0 (control irrigation), I1 (drought-induced by skipping irrigation at the 4th leaf stage), and I2 (drought-induced by skipping irrigation at the anthesis stage). The subplots included a control treatment and soil amended with different conditioners such as potassium polyacrylamide (KPAM, 30 kg/ha), farmyard manure (FYM, 4 tons/ha), and biochar (10 tons/ha); these were mixed thoroughly with the soil before sowing. The results showed a significant reduction in the water relation parameters (water potential up to 35.77% and relative water content up to 21%), gas exchange parameters (net CO2 assimilation rate up to 28.85%, stomatal conductance up to 43.18%, and transpiration rate up to 49.07%), and yield attributes (biological yield up to 8.45% and grain yield up to 32.22%) under drought stress conditions. In addition, water stress also induced an increase in the synthesis of osmoprotectants (proline up to 77.74%, total soluble sugars up to 27.43%, and total free amino acids up to 11.73%). Among all the soil conditioners used, KPAM significantly reduced the negative effects of drought stress on the wheat plants. Thus, it could be concluded that the use of soil conditioners is a promising method for dealing with the negative consequences of drought stress for achieving sustainable crop yields
    corecore