
 

UWS Academic Portal

Comparative analysis of GIS and RS based models for delineation of groundwater
potential zone mapping
Islam, Fakhrul; Tariq, Aqil ; Guluzade, Rufat; Zhao, Na; Shah, Safeer Ullah; Ullah, Matee;
Hussain, Mian Luqman; Ahmad, Muhammad Nasar; Alasmari, Abdulrahman; Alzuaibr, Fahad
M.; El Askary, Ahmad; Aslam, Muhammad
Published in:
Geomatics, Natural Hazards and Risk

DOI:
10.1080/19475705.2023.2216852

Published: 01/06/2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Islam, F., Tariq, A., Guluzade, R., Zhao, N., Shah, S. U., Ullah, M., Hussain, M. L., Ahmad, M. N., Alasmari, A.,
Alzuaibr, F. M., El Askary, A., & Aslam, M. (2023). Comparative analysis of GIS and RS based models for
delineation of groundwater potential zone mapping. Geomatics, Natural Hazards and Risk, 14(1), [2216852].
https://doi.org/10.1080/19475705.2023.2216852

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 12 Jun 2023

https://doi.org/10.1080/19475705.2023.2216852
https://uws.pure.elsevier.com/en/publications/dc6ca93e-bbab-41be-9d83-96c4cfaf0c83
https://doi.org/10.1080/19475705.2023.2216852


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgnh20

Geomatics, Natural Hazards and Risk

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgnh20

Comparative analysis of GIS and RS based models
for delineation of groundwater potential zone
mapping

Fakhrul Islam, Aqil Tariq, Rufat Guluzade, Na Zhao, Safeer Ullah Shah, Matee
Ullah, Mian Luqman Hussain, Muhammad Nasar Ahmad, Abdulrahman
Alasmari, Fahad M. Alzuaibr, Ahmad El Askary & Muhammad Aslam

To cite this article: Fakhrul Islam, Aqil Tariq, Rufat Guluzade, Na Zhao, Safeer Ullah Shah,
Matee Ullah, Mian Luqman Hussain, Muhammad Nasar Ahmad, Abdulrahman Alasmari, Fahad
M. Alzuaibr, Ahmad El Askary & Muhammad Aslam (2023) Comparative analysis of GIS and
RS based models for delineation of groundwater potential zone mapping, Geomatics, Natural
Hazards and Risk, 14:1, 2216852, DOI: 10.1080/19475705.2023.2216852

To link to this article:  https://doi.org/10.1080/19475705.2023.2216852

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 01 Jun 2023.

Submit your article to this journal Article views: 215

View related articles View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgnh20
https://www.tandfonline.com/loi/tgnh20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19475705.2023.2216852
https://doi.org/10.1080/19475705.2023.2216852
https://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19475705.2023.2216852
https://www.tandfonline.com/doi/mlt/10.1080/19475705.2023.2216852
http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2023.2216852&domain=pdf&date_stamp=2023-06-01
http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2023.2216852&domain=pdf&date_stamp=2023-06-01


Comparative analysis of GIS and RS based models for
delineation of groundwater potential zone mapping

Fakhrul Islama, Aqil Tariqb,c , Rufat Guluzaded, Na Zhaoe, Safeer Ullah Shahf,
Matee Ullahg, Mian Luqman Hussainh, Muhammad Nasar Ahmadc, Abdulrahman
Alasmarii , Fahad M. Alzuaibri, Ahmad El Askaryj and Muhammad Aslamk

aDepartment of Geology, Khushal Khan Khattak University, Karak, Pakistan; bDepartment of Wildlife,
Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, MS, USA; cState
Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan
University, Wuhan, China; dSchool of Earth Science and Engineering, majoring in Geodesy and
Survey Engineering, Hohai University, Nanjing, China; eState Key Laboratory of Resources and
Environmental Information System, Institute of Geographic Science and Natural Resources Research,
Chinese Academy of Sciences, Beijing, China; fBoard of Revenue, Government of Pakistan,
Peshawar, KPK, Pakistan; gFaculty of Earth sciences, Geography and Astronomy, University of Vienna,
Vienna, Austria; hNational Centre of Excellence in Geology, University of Peshawar, Peshawar, KPK,
Pakistan; iDepartment of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia;
jDepartment of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University,
Taif, Saudi Arabia; kSchool of Computing Engineering and Physical Sciences, University of West of
Scotland, Paisley, UK

ABSTRACT
Groundwater is a crucial natural resource that varies in quality and
quantity across Khyber Pakhtunkhwa (KPK), Pakistan. Increased popu-
lation and urbanization place enormous demands on groundwater
supplies, reducing both their quality and quantity. This research aimed
to delineate the groundwater potential zone in the Kohat region,
Pakistan by integrating twelve thematic layers. In the current research,
Groundwater Potential Zone (GWPZ) were created by implementing
Weight of Evidence (WOE), Frequency Ratio (FR), and Information
Value (IV) models of the Kohat region. In this study, we used Sentinel-
2 satellite data were utilized to generate an inventory map of ground-
water using machine learning algorithms in Google Earth Engine
(GEE). Furthermore, the validation was done with a field survey and
ground data. The inventory data was divided into training (80%) and
testing (20%) datasets. The WOE, FR, and IV models are applied to
assess the relationship between inventory data and groundwater fac-
tors to generate the GWPZ of the Kohat region. Finally, the current
research results of Area Under Curve (AUC) technique for WOE, FR,
and IV models were 88%, 91%, and 89%. The final GWPZ can aid in
better future planning for groundwater exploration, management,
and supply of water in the Kohat region.
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1. Introduction

Groundwater is an important natural resource that makes up about 34% of the
world’s freshwater supply (Tariq, Siddiqui, et al. 2022). It is the primary water supply
and is regarded as less contaminated than other water sources. It supplies approxi-
mately half of the freshwater that can easily be accessed and used for cleaning, drink-
ing, and cooking regularly (Termeh et al. 2019). Groundwater meets the requirements
of 97% of the world’s population for freshwater and provides 50% of the world’s irri-
gation (Tariq and Shu 2020). It can be considered the essential capital natural posses-
sions that occurred in the sediments and fractures of soil and rock (Ahmad et al.
2020). Groundwater is commonly utilized for domestic, industrial, and farming pur-
pose in numerous parts of the world (Mumtaz et al. 2023). The tremendous demand
for groundwater is increasing rapidly, and this rising need for water frequently causes
overutilization, which is striking massive stress on the inadequate groundwater
source. Furthermore, freshwater matter has become a critical issue in the tropical and
subtropical areas of the world due to unscientific irrigation, exploration, urbanization,
and changes in climatic factors.

Furthermore, these methods only sometimes account for the several parameters
that influence groundwater’s existence, storage, and mobility in rocks and soil
(Keesstra et al. 2012). While currently, with the advancement of computer technology,
geospatial techniques have become the most effective, emerging, and innovative ways
to delineate potential groundwater regions. These methods can be applied locally and
regionally based using ground and satellite data. These ground and remote sensing
(RS) data are processed in the geographic information system (GIS) platform to
detect and categorize the influencing parameters of groundwater (Basharat et al.
2022). RS provides inexpensive data as input to the GIS platform for the regional and
inaccessible regions with a temporal, spectral, and spatial resolution (Majeed et al.
2022; Sadiq Fareed et al. 2022; Tariq, Mumtaz, et al. 2023). Satellite data can compute
geological information (fault, fold, fractures, lithology) and topographic, climatic, and
hydrological parameters for groundwater assessment. Geospatial technology is an
innovative science to collect, store, display, and analyze various ground and RS data
for groundwater in the form of surface water inventory (e.g. dams, ponds, open wells,
and springs), groundwater demarcation, surface water modelling, and groundwater
contamination (Siddiqui et al. 2020; Zainab et al. 2021; Tariq, Yan, et al. 2022; Tariq,
Jiango, Li, et al. 2023).

In the past, numerous GIS and RS based models have been applied by scientist, i.e.
Evidential Belief Function (EBF) (Shah et al. 2021), Weight of Evidence (WOE) (Lee,
Kim, et al. 2012), Frequency Ratio (FR) (S. Hasan AL-Zuhairy et al. 2017), Decision
Tree (DT), (Lee, Song, et al. 2012), Classification and Regression Tree (CART),
(Mohammadi et al. 2021), Boosted Regression Tree (BRT), (Kordestani et al. 2019),
Artificial Neural Network (ANN), (Lee, Song, et al. 2012), Multivariate Adaptive
Regression Splines (MARS), (Kalantar et al. 2018), Binary Logistic Regression (BLR),
(Chen et al. 2018), Analytic Hierarchy Process (AHP), (Singh et al. 2018), Random
Forest (RF), (Tariq et al. 2021), Fuzzy Logic (FL), (Shahid et al. 2002), Support
Vector Machine (SVM), (Lee et al. 2017), Multi-criteria Decision Analysis (MCDA)
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(Kaliraj et al. 2014), Quadratic Discriminant Analysis (QDA) (Baloch et al. 2021), K-
Nearest Neighbour (KNN) (Naghibi et al. 2018). The SVM is the technique to predict
Groundwater Potential Zone (GWPZ) (Eid et al. 2023).

Groundwater is most vital and significant natural resource for sustainability due to
its agriculture-dependent economy in Pakistan. Groundwater is a vital element in the
economy, but human population, industrialization, unscientific exploration, and
groundwater mismanagement have twisted a chief risk to this treasured energy source
(Moazzam et al. 2022). Therefore, GWPZ is an indispensable technique for mapping
and managing the precious water resources in the area of interest (Baloch et al.
2021). Numerous field survey mechanisms, i.e. geological, geophysical, and hydro-
logical studies, have been used by researchers to demarcate potential groundwater
zones (Israil et al. 2006). These methods need several human resources financial
budget, and it can be most time-consuming.

In this research, WOE, FR, and IV models were utilized to locate the GWPZ in
the KPK region of Pakistan. Although several studies have been conducted across
Pakistan utilizing RS and GIS techniques to delineate the groundwater potential map,
none of those studies have been conducted in this region where sustainable ground-
water resources management is essential for the industrial, commercial development,
and economy of the country. In the current study, we used twelve influencing param-
eters that are considered significant to explore the deficient, low, medium, high, and
very high potential groundwater regions. These parameters were prepared in the GIS
platform from various ground and RS data. In the current research, three geospatial
techniques were used to compute the association of influencing parameters with
groundwater inventory data and to delineate potential groundwater regions in district
Kohat, Pakistan. These GIS-based groundwater mapping models have not been inves-
tigated previously in the district Kohat. The final GWPZ map can be helpful for deci-
sion-makers to assess and manage groundwater in various regions of the study area.

2. Material and methodology

2.1. Study area

The current research is conducted in district Kohat, situated in the southern part of
Khyber Pakhtunkhwa (KPK), Pakistan. The Kohat region is geographically extended
from 33� 350 1300 33� 490 7300 N and 71� 520 4900 E to 71� 260 3200 (Figure 1a–c)
(Hussain 2014). The study area occurred at an elevation of about 2000m.
Climatically the research region is considered a limited steppe climate region with
slight precipitation throughout the year. In Kohat District, the summers are long, hot,
humid, and clear, while the winters are brief, cold, and mostly clear. Both seasons
have clear skies. Temperatures below �0.5 �C or above 43.33 �C are extremely
uncommon throughout the year. On average, the temperature ranges from 2.2 �C to
39.45 �C (Azra et al. 2019). Geologically the current study area is situated in Kohat
Plateau. The study area includes fold and thrust belt collections which are thin-
skinned structures covered by thick-skinned structures. Compressional structures sub-
ject a significant portion of the plateau; however, the strike-slip faulting is limited to
the southern Kohat plateau (Hussain and Zhang 2018). The Kohat plateau is mainly
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occupied by lithologies of Eocene limestone, shale, evaporates, and subordinate clays,
and younger clastic sedimentary rocks of the Miocene–Pliocene age (Hussain et al.
2021). The age of sedimentary rocks in the plateau is composed of Paleocene to
Pliocene, which was first deposited on the northern Indian plate margin (Tariq and
Qin 2023).

2.2. Datasets

Various datasets are applied to generate different parameters used in the current
work. The datasets utilized in the current research comprise organization ground
(field survey and ground data) and RS data. The ground and satellite information
applied to prepare twelve influential parameters for groundwater potential were
acquired from appropriate national and international research platforms. The data
details and sources of information are mentioned in Table 1.

2.3. Methodology

The study was established in four phases: i) preparation of ground water inventory
map of the study area using different geospatial, machine learning, and field survey

Figure 1. (a) Geographical location of Pakistan, (b) Provincial boundary of KPK where study area
exists, and (c) Location map of study area with elevation.
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techniques, ii) generation of twelve influential groundwater parameters, iii) generating
GWPZ using three geospatial models like WOE, FR, and IV and, vi) performing val-
idation and accuracy assessment using AUC technique. The comprehensively organ-
ized methodology for the present investigation is shown in Figure 2.

2.3.1. Inventory map of surface water bodies
The accurate water inventory map is the primary and essential parameter to generate
GWPZ for the region of interest. The ground and RS data for the inventory map
were collected from various public organizations and satellite sources. The inventory
map of different water bodies was prepared from Sentinel-2 using a ML-model. The
inventory map was validated and verified with ground data collected from the public
department of district Kohat and various field surveys in the Kohat region. Finally,
detected inventory data of current research is divided into training (80%) and testing
(20%) datasets (Zhu et al. 2022).

2.3.2. Preparation of GWPZ conditioning parameters
Considering groundwater potential, conditioning parameters is a significant task
affecting the final output map of GWPZ; hence, conditioning parameters should be
cautiously designated (Bui et al. 2019). The existence and yield of groundwater in a
specified aquifer are influenced by numerous parameters. In the present study, twelve
influential conditioning factors like elevation, slope angle, aspect, curvature, drainage
network, rainfall, LULC, soil, NDVI and the road distance are considered to evaluate
the influences of mentioned parameters on groundwater potential in the study area.

Figure 2. Flowchart of present research work for the current research study.
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2.3.2.1. Elevation. Altitude influences the potential groundwater zone as it is con-
versely associated with the reservoir (Karimi-Rizvandi et al. 2021). The altitude of the
present research area is computed from having 12.5m spatial resolution and reclassi-
fied into five categories in ArcMap 10.8 as revealed in Figure 3a.

2.3.2.2. Slope. The slope gradient is another significant parameter for groundwater
potential because the slope angle directly influences the amount of rainwater water
intrusion and surface run-off in any region. A steep slope gradient negatively impacts
groundwater reservoirs because a higher slope enables a rapid run-off area and
reduces water infiltration. In contrast, a low slope promotes water infiltration and
potential recharge area (Maskooni et al. 2020). The slope of the Kohat region reclas-
sify into five classes, i.e. <5�, 5–15�, 15–25�, 25–35� and >35� using ArcGIS 10.8 as
shown in Figure 3b. The highest slope of the present research area is verified as 78�,
while the lowest slope of the region is recorded as 0�.

2.3.2.3. Aspect. The slope aspect presents slope directions that affect the quantity of
precipitation, radiation of the sun, wind speed, and LULC, which concomitantly
strike the amount of water permeation to the pore spaces of sediments influencing
groundwater potential in the region (Solomon and Quiel 2006). The aspect of the
present area is generated and reclassified into nine classes, as revealed in Figure 3c.

Figure 3. Parameters for GWPZ; (a) elevation, (b) slope, (c) aspect, (d) curvature (e) drainage net-
work (f) rainfall, (g) LULC, (h) lithology, (i) fault distance, (j) soil types, (k) NDVI (l) road distance.
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2.3.2.4. Curvature. The curvature map shows the association with the capacity to
store and hold water reserves on the area of surface. Usually, the dipped structures
accumulate more water bodies (Pham et al. 2019). The curvature of the Kohat region
is calculated from ALOS DEM having 12.5m resolution and reclassified into open,
flat, and convex groups, as mentioned in Figure 3d.

2.3.2.5. Drainage network. Drainage network presents an inverse association with the
percolation of water in fracture and sediments of strata because river density discour-
ages water retention (Kordestani et al. 2019). As the river network density is high,
water recharge in the area will be low and vice versa because river density favours
surface runoff and decreases infiltration. The five buffers were applied to the stream
network of the present research area stream, as shown in Figure 3e.

2.3.2.6. Rainfall. Climatic parameters are influential in controlling the water table
from the seasonal perception. Precipitation is a significant climatic factor that affects
groundwater recharge. Precipitation is considered a vital parameter for potential
groundwater mapping because the probabilities of penetration are more in cases of
high rainfall; consequently a chief source of water recharge in the area (da Silva
Monteiro et al. 2022). The precipitation of the present study area is computed from
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) of 2010
to 2022 using a ML Algorithm in GEE. The concluding precipitation map was then
reclassified into five classes using GIS environment as shown in Figure 3f.

2.3.2.7. LULC. LULC is a significant parameter influencing groundwater recharge,
occurrence, and availability. LULC presents environmental parameters having a sig-
nificant impression on groundwater because they affect penetration and surface run-
off (Bui et al. 2019). Moreover, bare ground and built-up regions usually display low
potential, while vegetation and the area near water reservoirs illustrate higher ground-
water potential. LULC map of the Kohat region is generated from Sentinel-2 data in
GEE using a ML algorithm. This causative factor was further categorized into six
classes for evaluating these classes on groundwater, as shown in Figure 3g.

Confusion matrices were used to create classification accuracy processes, such as
overall accuracy, omission and commission errors, and Cohen’s kappa statistic. These
classification accuracy matrices were derived using confusion matrices (Firdaus 2014).
As per reference data, the commission error is the percentage of pixels that have
been incorrectly assigned to classes they do not belong. On the other hand, the per-
centage of pixels that should have been assigned to a particular class according to the
reference data but have not been assigned to that class is an omission error. It was
figured out how to determine the omission and commission error for each LULC
class and estimate the average for all classes.

2.3.2.8. Lithology. The lithology of strata controls the porosity and permeability of
aquifers and influences groundwater due to its conductivity and penetration. These
rock and soil properties affect groundwater’s existence, accumulation, and mobility
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(Muavhi et al. 2022). The lithology of the Kohat region is extracted from the
Northern Geological Map of Pakistan, as shown in Figure 3h.

2.3.2.9. Fault distance. The fault Buffer of various distance gaps was selected for ana-
lysis because it influences the subsurface flow of fluids (Yin et al. 2018). Therefore,
geological faults and fractures are critical parameters in detecting groundwater sour-
ces. The fault parameter is digitized in this research, as shown in Figure 3i. Five buf-
fers were applied to calculate the relationship of fault with groundwater potential in
the study area.

2.3.2.10. Soil types. Soil is the uppermost horizon of land which helps in water infiltra-
tion. Soil type is a crucial factor in investigating potential groundwater mapping as the
penetration capability of an area controlled by pore spaces of soil (Tariq, Jiango, Lu, et al.
2023). Similarly, the soil is a significant conditioning parameter in the groundwater poten-
tial zone mapping. The soil’s texture and structure determine its permeability, which in
turn represents the soil’s capacity for allowing water and other substances to penetrate it
(Tariq, Mumtaz, et al. 2023). The soil type map of the research region is produced from
FAO and the soil survey of Pakistan, as shown in Figure 3j.

2.3.2.11. NDVI. There is a secondary association between NDVI with groundwater. For
example, the region increases plant density, the groundwater table decrease, and vice versa.
The value of NDVI in the various depths of the water table revealed that dense vegetation
occurs in shallow water regions (Islam et al. 2022). The NDVI map of the Kohat region is
calculated from Sentinel-2 using machine learning techniques in GEE. The final NDVI
map was reclassified into two classes in the GIS environment, as shown in Figure 3k.

2.3.2.12. Road distance. The road distance of District Kohat is generated using the
Google Earth platform and road network map of KPK Highway Authority in ArcGIS
platform as shown in Figure 3l.

3. Ground water potential zone mapping models

Geospatial modelling was applied in the current research to evaluate the association
of groundwater conditioning parameters and groundwater inventory data to generate
GWPZ of the Kohat region. The explanation of the applied three models in the pre-
sent study is as follows.

3.1. WOE model

This GIS-based technique employed linear logic based on Bayesian law to combine data
to approximate events’ non-conditional and conditional probability (Elmoulat et al.
2015). WOE models compute the spatial association of dependent variables, i.e. water
bodies’ location and independent variables like groundwater potential mapping condi-
tioning parameter and compute the weight of each class of parameters. The WOE
method was first considered to evaluate mineral potential mapping using GIS-based
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modelling (Bonham-Carter et al. 1989). In this technique, the Wþ and W� weights
should be considered as the dynamic aspects. The weight of conditioning factors (B)
established on the existence or non-existence of the water bodies (C) of the study region
is estimated using the following Eqs. (1)–(3) (Bonham-Carter et al. 1989).

Wþ ¼ ln
P B

C

� �

h B
C

� � (1)

W� ¼ ln
h B

C
:::

� �

h B

C
:::

� � (2)

L ¼ Wþ � W� (3)

In the mentioned equation, p is the likelihood and ln is the natural logs. However, BB
and BB are the existence and nonexistence in the causative factor, correspondingly.
Similarly, CC and C

:::
C
:::

show the occurrence and absence of inventory, respectively (Xu
et al. 2012). Wþ signifies the occurrence of the conditioning parameters at the spatial posi-
tions. Its amount demonstrates the positive relationship between conditioning parameters
and water bodies occurrence, respectively. While W� represents the nonappearance of
groundwater parameters and suggests the level of a contrary relationship.

3.2. FR model

The FR technique is the finest bivariate statistical model applied as a valuable GIS-
based model for evaluating groundwater inventory and groundwater conditioning
parameters (Guru et al. 2017). Currently, the FR model has been effectively utilized
for GWPZ in various regions of the world. The FR value equal to or greater than one
shows a strong positive correlation between different variables. The following Eq. (4)
calculation is applied to compute FR for all causative factors in the present study
(Ahmad et al. 2022).

FR ¼ E=F
M=L

(4)

Where FR¼ Frequency Ratio for each conditioning parameter, E ¼ number of
water body pixels in each landslide’s causative parameter class, F¼ total number of
all well pixels in research region, M ¼ number of pixels in each landslide condition-
ing factors, L ¼ total number of all pixels in study area.

3.3. IV model

In the current research, the IV model is applied to make GWPZ of the Kohat region.
IV is one of the most suitable practices for choosing significant parameters, ranking
variables based on their position, and computing their association with inventory
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data of the study area in the predictive model (Pardeshi et al. 2013). IV model was
first improved by Shano et al. (2020). This article considers the IV for each parameter
class based on the presence of groundwater inventory pixels in the given region. The
computed information value supports governing the role of each parameter class for
groundwater occurrence (Ali et al. 2023). The conditional probability was calculated
by dividing the groundwater pixels in each parameter class into pixels of a subclass of
groundwater parameter, while the prior probability was considered by dividing the
total groundwater pixels in the research region by the entire pixels in the whole
research region using the Eq. (5) (Pardeshi et al. 2013).

W ¼ log

MQox Roð Þ
MQox Roð ÞP MQox Roð ÞP

MQox Roð Þ
(5)

W symbolize the weight of parameters for groundwater. Mox Roð Þ illustrates water
number of pixels within class ‘o’. MQox Moð Þ number of all pixels within class ‘o’,
MQOx ROð Þ total number of water pixels

P
MQOx Mið Þ) practice for entire number of

pixels in region.

3.4. Delineation of the GWPZs

3.4.1. Delineation of groundwater using WOE
The groundwater potential index (GWPI) was calculated (Eq. (6)) and mapped based
on s values.

GWPI ¼ s1 þ s2:::þ sn (6)

where s is the final weight for the WOE model.

3.4.2. Delineation of groundwater using FR
In contrast to the WOE, the weightage of each class in FR is not determined based on the
characteristics of the conditioning factor; instead, it is given in the form of the spatial
occurrence of the wells in each class. This contrasts with the WOE, which determines the
weightage of each class based on the properties of the conditioning factor. Similarly, the
FR is computed for each of the conditioning variables. The succeeding scientific Eq. (7)
has been applied to produce GWPZ of the Kohat region (Guru et al. 2017).

GWPZM ¼
Xn
i¼1

FRij (7)

3.4.3. Delineation of groundwater using IV
The GWPZ can be produced for Kohat region using the Eq. (8).

GWPZ ¼ WE þWS þWA þWC þWLULC þWL þWP þWF þWR þWD (8)
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WE ¼ Weight of Elevation, WS ¼ Weight of Slope, WA¼ Weight of Aspect, WC

Weight of Curvature, WLULC ¼ Weight of Landuse Landcover, WL ¼ Weight of
Lithology, WF¼ Weight of fault, WR¼ Weight of Road, WP¼ Weight of Rainfall,
WD¼ Weight of stream network.

3.5. Validation of the GWPM

Evaluation of generated GWPZ is crucial because models without validation have no
empirical value. Rather than using the hydraulic parameter of specific capacity, as
previous studies did, an indirect indicator of groundwater yield measurement was
used in the present research (Jha et al. 2010). From a groundwater sustainability point
of view, groundwater yield measurement has been used widely by several researchers
such as (Qureshi et al. 2010; Pardeshi et al. 2013; Ji et al. 2015; Fayez et al. 2018;
Arabameri et al. 2019) for validation of GWPZ. For many investigations, the receiver
operating characteristics (ROC) curve has been the gold standard for evaluating the
precision of the GWPZ (Shirazi et al. 2012). The area under the AUC measures the
accuracy with which a prediction system can determine whether or not an incident
will occur (Shah et al. 2022). In order to validate the WOE, RF and IV-generated
GWPZ, the healthy dataset (20%) was used for testing. Areas under the ROC curve
were used to evaluate the GWPZ, spatial efficacy (AUC). The rate explains the accur-
acy with which the model and influencing variables predict the potential. AUC deter-
mines which model is superior, and the one with the most outstanding value wins
(Rahman 2008).

4. Results

In this article, we developed an inventory of groundwater bodies from Sentinel-2,
imageries using various advanced JavaScript algorithms, Google Earth Pro and
Google Earth images. The spatial location of surface water bodies like well, ponds,
and springs is mentioned in Figure 1. In the present research, we accomplished three
bivariate models to generate GWPZ for the Kohat area.

4.1. WOE model

The contrast value can be computed from the calculation of both mentioned weights
and calculate the association of both dependent and independent variables. The con-
cluding LSM of the Kohat region is mentioned in Figure 4. Table 2 shows the analyt-
ical results of GIS-based models. The two variables’ low correlation shows
groundwater’s low potential zone, and the high value illustrates the high groundwater
potential zone in the research region. Based on the results of the WOE model in the
elevation parameter, an altitude less than 500m shows a strong association with
groundwater. However, more than 800m elevation class shows the slightest relation-
ship with groundwater.
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4.2. FR model

The ultimate output map by FR is mentioned in Figure 5. Estimating the GWPZ with
the FR model cannot be overstated. FR model carried out the GWPZ by correlating
the various variables that conditioned the water with the specific locations of bore
wells. In addition, a more excellent correlation value suggests a more significant
groundwater potential and vice versa. Finally, LULC classes have a significant bearing
on the effect of industrialization on the potential of groundwater. According to the
findings of this research, the water body was a factor in the highly prospective ability
of 9.923. The mining/industrial region and the vegetation cover area both discovered
insignificant FR values when the FR was analyzed by the conditioning factor and the
bore wells data. This is the case because FR is analyzed. The result suggested a low
FR value because more data is needed from these classes’ bore wells. In contrast, the
vegetation cover was always found to influence the infiltration rate significantly.

The FR model’s elevation class of less than 500m, as shown in Table 2 in the pre-
sent article, illustrates a strong correlation with the groundwater. In contrast, the less
correlated elevation class with groundwater is more than 800m elevation. In the
results of the IV model, as shown in Table 2, the most significant elevation for
groundwater is <500m altitude, while the less critical class is more than 800m. The
results revealed that the correlation value of the WOE, FR, and IV model for eleva-
tion classes less than 500m are 1.62, 3.39, and 1.22, respectively. However, the varia-
bles association results show that the correlation value of altitude class > 800m for
WOE, FR, and IV model are �1.84, 0.18, and �1.72, respectively. The results of three

Figure 4. The WOE model for groundwater potential zone.
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Table 2. Statistical analysis for GWPZ of District Kohat, Pakistan.

Parameters Class
No of pixels
in class

No of
Landslide
pixels

in a class Wþ W� WoE
% Pixels
in Class

% LS
pixels
in Class (FR)

IV¼ log
(A/B)

Elevation < 500 8360 149 0.58 �0.25 0.83 22.16 39.21 1.77 0.57
500–600 16236 138 �0.17 0.11 �0.28 43.04 36.32 0.84 �0.17
600–700 8448 63 1.49 �5.51 7.00 22.40 16.58 0.74 0.55
700–800 3234 22 �0.40 0.03 �0.43 8.57 5.79 0.68 �0.39
> 800 1443 8 �0.60 0.02 �0.62 3.83 20 3.41 �0.60

Slope < 5� 2211 76 1.11 0.00 0.73 5.87 20 3.41 1.09
10–20� 1186 130 2.35 0.00 2.68 3.15 34.21 10.87 2.25
15–25� 5998 70 �0.61 0.00 2.36 15.92 18.42 1.16 �0.60
25–35� 11056 61 �0.13 0.00 1.22 29.35 16.05 0.55 �0.13
> 35� 17223 43 �1.54 0.00 1.53 45.72 11.32 0.25 �1.53

Aspect F 2779 115 1.44 �0.29 1.73 1.44 7.37 30.26 4.11
NE 2970 31 0.03 0.00 0.04 0.03 7.87 8.16 1.04
E 5471 42 �0.28 0.04 �0.32 �0.28 14.50 11.05 0.76
SE 5673 49 �0.16 0.03 �0.18 �0.16 15.04 12.89 0.86
S 5416 27 �0.71 0.08 �0.79 �0.71 14.36 7.11 0.49
SW 3920 41 0.04 0.00 0.04 0.04 10.39 10.79 1.04
W 4073 21 �0.68 0.06 �0.73 �0.68 10.80 5.53 0.51
NW 3762 27 �0.34 0.03 �0.38 �0.34 9.97 7.11 0.71
N 3610 27 �0.30 0.03 �0.33 �0.30 9.57 7.11 0.74

Curvature Concave 14057 213 0.4 �0.4 0.77 37.27 56.05 1.50 0.41
Flat 6955 117 0.5 �0.2 0.69 18.44 30.79 1.67 0.51

Convex 16709 50 �1.2 0.4 �1.67 44.30 13.16 0.30 �1.21
Distance
to Stream

< 200 5359 206 1.36 �0.63 2.00 14.27 54.21 3.80 1.33
200–400 6009 66 0.08 �0.02 0.10 16.01 17.37 1.09 0.08
400–600 6951 45 �0.45 0.08 �0.53 18.51 11.84 0.64 �0.45
600–800 9656 33 �1.09 0.21 �1.30 25.72 8.68 0.34 �1.09
> 800 9069 30 �1.13 0.20 �1.32 24.16 7.89 0.33 �1.12

Precipitation
(mm/year)

<900 5829 30 �0.68 0.09 �0.77 15.49 7.89 0.51 �0.67
900–950 10341 62 �0.53 0.14 �0.67 27.47 16.32 0.59 �0.52
950–1000 11035 113 0.01 �0.01 0.02 29.32 29.74 1.01 0.01
1000–1050 5823 115 0.68 �0.19 0.87 15.47 30.26 1.96 0.67
>1050 4612 60 0.26 �0.04 0.30 12.25 15.79 1.29 0.25

LULC Water 200 150 5.69 �0.50 6.19 0.53 39.47 74.41 4.31
Trees 337 10 1.10 �0.02 1.12 0.89 2.63 2.94 1.08
Crops 3581 52 0.37 �0.05 0.42 9.50 13.68 1.44 0.37

Builtup Area 1650 6 �1.03 0.03 �1.06 4.38 1.58 0.36 �1.02
Bare Ground 234 2 �0.17 0.00 �0.17 0.62 0.53 0.85 �0.16
Scrub/Shrub 31700 160 �0.70 1.32 �2.01 84.08 42.11 0.50 �0.69

Lithology Mss 4802 36 �0.30 0.04 �0.34 12.73 9.47 0.74 �0.30
Q 7565 131 0.55 �0.20 0.75 20.06 34.47 1.72 0.54
R 16554 175 0.05 �0.04 0.09 43.89 46.05 1.05 0.05
Pal 8797 38 �0.85 0.16 �1.01 23.32 10 0.43 �0.85

Fault Buffer <500 1300 40 1.14 �0.08 1.21 3.45 10.53 3.05 1.12
1500 2381 62 0.97 �0.11 1.08 6.31 16.32 2.58 0.95
3000 3420 40 0.15 �0.02 0.17 9.07 10.53 1.16 0.15
5000 4341 45 0.03 0.00 0.03 11.51 11.84 1.03 0.03
>5000 26285 193 �0.32 0.49 �0.81 69.68 50.79 0.73 �0.32

Soil Loamy and
shallow soil

7510 54 �0.67 0.64 �1.30 53 21 0.71 0.66

Mainly
loamy soil

30035 326 0.64 �0.67 1.55 27 57 2.69 1.23

NDVI Low 15406 117 �0.29 0.16 �0.45 40.91 40.91 �0.01 �0.28
High 22252 263 0.16 �0.29 0.45 59.09 59.09 0.01 0.16

Distance
to Road

< 1000 3145 22 �0.37 0.03 �0.40 8.34 5.79 0.69 �0.36
1000–2000 3993 40 �0.01 0.00 �0.01 10.58 10.53 0.99 �0.01
2000–3000 4328 39 �0.11 0.01 �0.13 11.47 10.26 0.89 �0.11
3000–4000 3569 70 0.68 �0.11 0.78 9.46 18.42 1.95 0.67
> 4000 22693 209 �0.09 0.12 �0.21 60.15 55 0.91 �0.09
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bivariate models for elevation illustrate that low elevated area is more permeable and
suitable for groundwater potential as compared to high elevated zones of Kohat dis-
trict. The slope gradient parameter is considered a very significant parameter for
GWPZ.

The bivariate results achieved from the association of groundwater conditioning
parameters and groundwater pixels in the research region, as mentioned in Table 2,
revealed that the most critical class for the groundwater potential is 5� followed by
10�–20�. The results also show that the most significant slope class for the current
research area is >35� slope followed by 25�–35�. Based on the slope angle parameter,
the slope class with less than 5� has the maximum weight. The association rank for
both variables in the present work for 5� by WOE, FR, and IV are 2.68, 3,5, and
2.37, respectively. The correlation between water inventory and groundwater condi-
tioning parameters for slopes over 35� are �1.45, 0.25, and �1.53 for WOE, FR, and
IV models, respectively.

4.3. IV model

The analytical values, as shown in Table 2 for the current research analysis between
dependent and independent variables. It illustrated that a lower slope has the greatest like-
lihood of groundwater potential. In contrast, a steep slope has adverse impacts on the
occurrence of groundwater due to high runoff in high slopes region. The analytical results
of bivariate models explained that F is the most vital class of aspect, followed by NE of the
Kohat area. The correlation results of the WOE, FR, and IV model for the F direction are

Figure 5. The FR model for groundwater potential.
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1.73, 4.11, and 1.47, respectively. The NE and SW classes of aspects follow the F class of
aspects. The less significant class of aspect is the S direction having �0.71, 0.65, and
�0.70 for WOE, FR, and IV model. According to the analysis for the association between
groundwater data and curvature shape, the concave structure has the highest correlation
value, i.e. 0.99, 1.65, and 0.50 for WOE, FR, and IV, respectively. The concave structure is
the most significant class of curvature for groundwater potential zone mapping. The
results revealed that the spatial association of groundwater and conditioning parameters
for WOE, FR, and IV models are �1.67, 0.29, and �1.21, respectively. As shown in
Table 2, the results revealed that the most significant class of curvature is a concave struc-
ture, followed by Flat and convex structures. As shown in Table 2, the results revealed
that groundwater is more likely to occur in a sense stream. There is a maximum likeli-
hood of distance from the river of less than 200m. The correlation value of less than
200m class of stream is 2.0, 3.80, and 1.33 for WOE, FR, and IV model, respectively.
These results illustrate that fewer distances to rivers have had a more significant influence
on groundwater potential (Figure 6).

However, most of the less significant class of stream parameters are greater than
800m, followed by a 600m–800m range. The association between WOE, FR, and IV
variables are �1.32, 0.33, and �1.12, respectively, for more significant than 800m class
of stream. In the current research, the precipitation map was formed from CHIRPS sat-
ellite data, followed by the reclassification into five categories to assess the relationship
of rainwater factor with groundwater bodies. The outcomes, as revealed in Table 2 for
rainfall, supported that rainfall is a significant aspect of groundwater potential. The
results show that the 1000–1050mm/year precipitation class is the most significant for
groundwater potential, followed by >1050mm/year. The 1000–1050 class correlation

Figure 6. The IV model for groundwater potential.
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between rainfall and groundwater is 1.32, 2.73, and 1.0 for WOE, FR, and IV models.
The precipitation class < 900mm/year has no significant impact on groundwater poten-
tial. The bivariate analysis for WOE, FR, and IV are �0.90, 0.45, and �0.79, respect-
ively. Considering the above-mentioned statistical facts, it can be concluded that high
precipitation classes show more groundwater occurrence and vice versa. In the current
research results, the cropland area is the most important and influential class of LULC
parameter in the study area. The analytical results of groundwater and conditioning
parameters for WOE, FR, and IV are 0.63, 1.70, and 0.53, respectively. The agricultural
land shows high potential results for groundwater because the agriculture region is
recharged from the irrigation system of the study area. The scrub/shrub, forest, and
urban class of LULC follow the agricultural land.

The analysis of both variables treasures that Q is the most influential geological forma-
tion of lithology parameters for groundwater potential in the Kohat region. The correl-
ation of both variables is clear in WOE, FR, and IV model. The results for groundwater
potential zone mapping of the present study show that the lithological parameter is the
least significant class for groundwater. A fault is a significant parameter for groundwater
percolation. Geological faults strongly influence groundwater mobility because they
enhance the strata’s mobility mechanism for groundwater. The maximum likelihood of
groundwater potential in distances to a fault is <500m buffer region. The correlation
value of both variables of class <500m for WOE, FR, and IV are 0.60, 1.73, and 0.55,
respectively. The geological fault’s> 5000m fault buffer has no significant impact on
groundwater. The results of >5000m buffer for the WOE, FR, and IV model are �0.45,
0.82, and �0.20, respectively. The results concluded that fault is the influential parameter
for groundwater potential for the present research area. As shown in Table 2, the results
explained that mainly loamy soil is the suitable class for groundwater in the Kohat area.
The correlation of both variables for WOE, FR, and IV are 1.55, 2.69, and 1.23, respect-
ively. As shown in Table 2, the present research results illustrate that NDVI is a crucial
parameter for groundwater potential. Both variables’ association ranks are 0.57, 1.83, and
0.27 for WOE, FR, and IV model, respectively. The results of the present study between
NDVI and GWPZ revealed that NDVI and groundwater Table depth are inversely related,
i.e. high NDVI will have low water table depth and vice versa for the current investigation.
The current study considered the road to compute the association between the road net-
work in the Kohat region and the groundwater potential. The results explained that the
most influential class of road network is a 3000–4000m buffer followed by >4000m and
2000–3000m buffer. The correlation value for WOE, FR, and IV model are 0.78, 1.95,
and 0.67, respectively. Table 2 revealed that the <1000m class correlation values between
the road and groundwater are �0.40, 0.69, and �0.36 for WOE, FR, and IV model,
respectively. The results of all road network buffers revealed that the road network has
adverse impacts on groundwater in the study area.

4.4. Validation

4.4.1. Validation of models
In the modelling technique, validation of the model is a significant phase to accom-
plish the reliable scientific worth of the research project (Barakat et al. 2023). In
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numerous research, the AUC technique was used to evaluate GWPZ. This ROC curve
is considered a standard index for accuracy assessment. This technique has been
extensively utilized for assessing techniques applied in various water research investi-
gations. The receiver operating characteristics (ROC) graph validated the WOE, FR,
and IV models. The region indicates the precision of the prediction or classification
under the receiver operating characteristic curve (AUC) (Pourghasemi and Rossi
2017). In this investigation, we have tested and verified three different models derived
from the GWPZ’s final categorization. The AUC values range from 0 to 1. If the
number is less than 0.5, the model’s classification was inappropriate, and it should be
redone. On the other hand, if the value is close to 1, it suggests that the result is
clearly defined (Pourghasemi and Rossi 2017).

To verify WOE, FR, and IV models, the ROC curves of the GWPZ maps were
constructed (Figure 7). The finding demonstrates that the outcome predicted by the
FR model for GWPZ (AUC ¼ 91%) is successfully achieved when compared to both
the WOE model (AUC ¼ 88%) and the IV model (AUC ¼ 89%). Nevertheless, all
the obtained findings were checked for validity and clearly defined (Pourghasemi and
Rossi 2017). However, the FR is a better representative for this study area to indicate
the spatial distribution of the GWPZ compared to the WOE and FR models. This is
because the GWPZ is more likely to be found in areas where the FR model is more
accurate. As a result, this validation method is highly recommended for research into
potential groundwater evaluation. The generated validation graphs of the applied
models in the present study, as mentioned in Figure 7, utilized twenty percent of the
inventory data of water. The highest value of the AUC value showed the most reliable
results of the model and while the lowest value showed unreliable results. The find-
ings by mentioned validation technique for WOE, FR, and IV clearly explained that
all applied models are consistent and trustworthy methods to produce GWPZ for the

Figure 7. ROC curves for WOE, FR, and IV methods.
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Kohat District of Pakistan. The validation outcome specifies that the FR technique is
the most reliable method for GWPZ in the study area.

4.4.2. LULC accuracy assessment
Accuracy evaluations were performed after obtaining land use/land cover categoriza-
tion outcomes. In order to do so, we used the user accuracy matrix, the producer
accuracy matrix, and the total accuracy matrix to measure precision. They calculated
the users’ accuracy by taking the ratio of adequately classified cells to the total num-
ber of reference points. Google Earth was used as a reference tool for this research.
The overall accuracy was calculated by dividing properly classified cells by all pixels.
In contrast, producer accuracy was calculated by dividing the number of cells with
correct land use/land cover classification by the number of ground truth pixels as
explained in Table 3.

5. Discussion

Due to the increased demand for water availability for urbanization, industrialization,
and irrigation purposes, there has been an increase in the research investigation on
the groundwater scenario. This is especially true in arid to semi-arid regions world-
wide, where the need for groundwater is even more critical. There have been numer-
ous research to understand the science behind water recharge and prepare GWPZ for
the scientific exploration and management of groundwater (Arabameri et al. 2019).
Therefore, proper groundwork and methods should be implemented for GWPZ to
manage the groundwater because the execution method for GWPM is still an argued
subject (Nampak et al. 2014; Park et al. 2014).

This article has emphasized the appreciation of the groundwater potential of the
Kohat region of Pakistan has been evaluated using WOE, FR, and IV models. These
models were applied to compute the correlation between water body pixels and con-
ditioning parameters for groundwater. The lower correlation value represents low
potential zones, while the high correlation shows high potential groundwater regions.
The probability of groundwater potential generally diminutions with increasing eleva-
tion (S. Hasan AL-Zuhairy et al. 2017). In the present study, the spatial analysis dis-
closed that the elevation class of < 500m has a higher correlation value between
both variables; however, the > 800m elevation class revealed no significant associ-
ation for groundwater potential. The slope gradient is an influential parameter for
groundwater potential because steep slopes are the significant parameter in GWPZ.
Moreover, the slope gradient is another significant parameter for groundwater

Table 3. Accuracy assessment of land use and land cover.
S. No Classes UA PA OA K

1 Water 90.00 91.84 87.00 0.81
2 Trees 88.00 84.62
3 Crops 86.00 87.76
4 Built up area 92.00 86.79
5 Bare ground 86.00 91.49
6 Shrubs 88.00 88.00

Notes: UA¼User’s Accuracy, PA¼ Producer’s Accuracy, OA¼Overall Accuracy, K¼ Kappa Coefficient.
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potential. A steep slope gradient adversely impacts on groundwater because it
increases the surface run-off and affects the intrusion of precipitation into the ground
(Jaiswal et al. 2003). If the slope angle is greater than 35�, groundwater potential is
reduced because it restricts the aquifer’s recharge (Madrucci et al. 2008). The current
study considers slope angle a critical factor for GWPZ. The association of dependent
and independent variables for slope up to 20� is very suitable for the high potential
zone of groundwater. In contrast, the slope angle > 35� has an inverse relationship
with the groundwater pixel and revealed low groundwater potential, as shown in
Table 2 of the results. The flat surface of the aspect is more appropriate for ground-
water amount (Manap et al. 2013).

In the present study, we observed that the flat surface of the aspect has a strong
association with groundwater inventory data. The flat surface correlates with 0.86,
1.97, and 0.68 using WOE, FR, and IV models. The FR and EBF model revealed that
concave and convex structures are less associated with groundwater potential than
flat regions. Water reservoir and aquifer recharge mainly occurred in the flat region;
however, the convex and concave structures did not support the water storage and
infiltration (Arabameri et al. 2020). In this study, our results concluded that the Flat
class of curvature strongly correlates with groundwater, followed by Concave. At the
same time, convex adversely impacts groundwater potential, as shown in Table 2. The
most developed likelihood of groundwater is perceived in denser drainage networks.
In the current investigation, the < 200m class of drainage network shows the most
influential association with groundwater potential using WOE, FR, and IV technique,
followed by 200–400m and 400–600m. The relationship ranks of the> 800m class of
drainage revealed that this class has no impact on groundwater potential. The rainfall
strongly correlates positively with aquifer recharge (Wu et al. 2020). In this study, the
precipitation class 1000–1050mm/year strongly correlates with groundwater potential
having a positive correlation y followed by >1050mm/year. The low precipitated area
has no inverse relationship with the groundwater potential of the study area. The pre-
cipitation class <900mm/year has minor importance for groundwater potential in the
current study area and is followed by 900–950mm/year Crops and a garden class of
the LULC parameter are significantly associated with groundwater having correlation
values of 2.06 and 1.25, respectively, demonstrating these classes’ high potential water
zones (Falah et al. 2017).

In the context of binary classification, the Receiver Operating Characteristic (ROC)
curve is a popular method to evaluate and compare the performance of different
models. The ROC curve plots the True Positive Rate (TPR) against the False Positive
Rate (FPR) for different thresholds of a model’s predicted probability (Li et al. 2021).
A model with a higher AUC (Area Under the ROC Curve) is considered better. In
this study we used WOE, FR and IV and compare their performance using the ROC
curve. Model WOE has an AUC of 88%. This means that it has a good balance
between TPR and FPR, with relatively few false positives and false negatives. Model
WOE is likely to be a good choice for classification tasks where both precision and
recall are important (Wahla et al. 2022).

Model FR has an AUC of 0.91. This means that it has a high TPR and low FPR,
making it suitable for applications where identifying true positives is crucial, and false
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positives are less of a concern. However, Model IV may be too aggressive in classify-
ing examples as positive, leading to a high false-negative rate. Model IV has an AUC
of 91%. This means that it has a higher FPR and lower TPR compared to Model A,
but still performs better than random guessing. Model IV may be useful in cases
where minimizing false positives is critical, but it may not perform as well in cases
where false negatives are costly.

In summary, each model has its strengths and weaknesses, and the choice of the
appropriate model depends on the specific requirements of the task at hand. Model
FR strikes a good balance between TPR and FPR, Model IV is useful when minimiz-
ing false positives is crucial, and Model WOE is suitable for identifying true positives
at the expense of false negatives.

Our research results in the Kohat region of Pakistan showed that cropland is the
most influential factor for groundwater potential. The correlation value for cropland
in the current research are 0.63, 1.70, and 0.53 for WO, FR, and IV, respectively.
Concerning the geological fault buffer, it was hypothesized that the association
between both variables for groundwater would weaken the further away from the
fault one got. Their relationship increases when the distance from the fault decreases
(Falah et al. 2017). Our present study results in the Kohat area presented that fault
favours water infiltration and supports the aquifer recharge in the current area. The
most effective fault buffer is <500m because this class shows a strong positive correl-
ation of 0.60, 1.73, and 0.55 applying the WOE, FR, and IV model, followed by
1500m and 3000m buffers. However, the buffer of >5000 class has no significant
role in groundwater potential and recharge of water. The NDVI is a vital parameter
for groundwater potential. NDVI and water Table have an inverse relationship, i.e.
when the NDVI increases, the water table rise and vice versa (Seeyan et al. 2014).
The same scenario we observed in our current research region. The high NDVI zone
strongly correlates with groundwater, while the low NDVI region adversely impacts
the present area. As shown in Table 2, the results justified the above statement for
NDVI association with groundwater.

According to the analytical results in Table 2, drainage network, slope, elevation, and rain-
fall are the most significant parameters for GWPZ in the present research area. According to
GIS-based statistical models, the FR is the best technique for GWPZ in the current research
project. Final GWPZ was also produced using GIS-based models and then was classified
into five classes of very low, low, moderate, high, and very high groundwater potential zones.
The final GWPZ can be helpful for various research organizations like agriculture and
energy-related sectors to manage the groundwater in the present study area.

6. Conclusions

This article describes a study that aims to investigate potential groundwater zones in
the Kohat District of Pakistan using three different GIS-based models: Weight of
Evidence (WOE), Frequency Ratio (FR), and Information Value (IV). The study uses
various data sources, including satellite imagery, ground surveys, and public health
department data, to develop an inventory map of groundwater and twelve ground-
water conditioning parameters. The study then applies the three GIS-based models to
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generate GWPZ maps and categorizes them into five categories based on their poten-
tial for groundwater availability. The study finds that stream, slope angle, elevation,
and rainfall are the most significant parameters for GWPZ. The study uses ROC
curves to assess the accuracy of the models and finds that FR is the most reliable
model for the study. The study concludes that the GWPZ maps generated by the
WOE, FR, and IV techniques can be useful for research and development agencies to
improve groundwater exploration and development planning in the future.
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