15 research outputs found

    Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater

    Get PDF
    Synthesis of ferrofluid without the addition of stabilizing agents or surfactants is an innovation of new method for microplastic removal. This study focuses on the ability of several types of oils as carriers and how they may improve the removal efficiency of the microplastic. The method is relatively low cost, simple and sustainable. The formation of ferrofluid involved the mixing of oil and iron oxide powder. The experimental work was commenced by adding 2 mm polyethylene terephthalate (PET) microplastics into synthetic ferrofluid. Then, the removal efficiency of microplastics was examined by varying the elements of ferrofluid based on three specific parameters, namely type of oil, volume of oil and dosage of iron oxide to obtain a standard formulation of the optimum results. Overall findings of the study indicated that the optimum formulation for ferrofluid preparation was at a ratio of 1:2.5 (volume of oil: dosage of magnetite) using lubricating oil which has successfully removed 99% of microplastic from water media. Subsequently, the physical and chemical properties of the prepared ferrofluid were also analysed using scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Performance evaluation of the prepared ferrofluid on actual wastewater (laundry wastewater) revealed that 64% of microplastics were removed after treatment

    Synthesis and physicochemical properties of magnetite nanoparticles (Fe3O4) as potential solid support for homogeneous catalysts

    Get PDF
    Black and dark magnetite nanoparticles (MNPs) were successfully synthesised through a co-precipitation method as a crucial material to support palladium(II) complexes as they have the potential to become a stable solid support for homogeneous systems. The two-hour synthesis was done by mixing FeCl3.6H2O and FeCl2.4H2O in an alkaline medium. To improve the properties of iron oxide nanoparticles, the process was done under inert conditions. The physicochemical properties of this support was then characterised using various spectroscopic techniques such as Fourier Transform Infrared (FTIR) spectroscopy that shows the X-ray diffraction analysis (XRD), Thermogravimetric analysis (TGA), Field Emission Scanning Electron Microscope (FESEM), and Vibrating Sample Magnetometer (VSM). The pore size distribution and the specific BET surface area were measured by N2 adsorption-desorption isotherms. The FTIR absorption spectroscopy was used to confirm the formation of Fe-O bond. The most intense peak correspond to the (311) crystallographic orientation of the spinel cubic phase of MNPs shown by XRD pattern result. The particle size of magnetite was successfully controlled in the range of 20-40 nm. All of the MNPs showed the superparamagnetic behaviour with high saturation magnetization

    ​​The utilisation of Antarctic microalgae isolated from Paradise Bay (Antarctic Peninsula) in the bioremediation of diesel

    Get PDF
    Research has confirmed that the utilisation of Antarctic microorganisms, such as bacteria, yeasts and fungi, in the bioremediation of diesel may provide practical alternative approaches. However, to date there has been very little attention towards Antarctic microalgae as potential hydrocarbon degraders. Therefore, this study focused on the utilisation of an Antarctic microalga in the bioremediation of diesel. The studied microalgal strain was originally obtained from a freshwater ecosystem in Paradise Bay, western Antarctic Peninsula. When analysed in systems with and without aeration, this microalgal strain achieved a higher growth rate under aeration. To maintain the growth of this microalga optimally, a conventional one-factor-at a-time (OFAT) analysis was also conducted. Based on the optimized parameters, algal growth and diesel degradation performance was highest at pH 7.5 with 0.5 mg/L NaCl concentration and 0.5 g/L of NaNO3 as a nitrogen source. This currently unidentified microalga flourished in the presence of diesel, with maximum algal cell numbers on day 7 of incubation in the presence of 1% v/v diesel. Chlorophyll a, b and carotenoid contents of the culture were greatest on day 9 of incubation. The diesel degradation achieved was 64.5% of the original concentration after 9 days. Gas chromatography analysis showed the complete mineralisation of C7–C13 hydrocarbon chains. Fourier transform infrared spectroscopy analysis confirmed that strain WCY_AQ5_3 fully degraded the hydrocarbon with bioabsorption of the products. Morphological and molecular analyses suggested that this spherical, single-celled green microalga was a member of the genus Micractinium. The data obtained confirm that this microalga is a suitable candidate for further research into the degradation of diesel in Antarctica

    Harnessing Diesel-Degrading Potential of an Antarctic Microalga from Greenwich Island and Its Physiological Adaptation

    Get PDF
    Phytoremediation is a plant-based approach to extract, stabilise, eliminate, or render pollutants into less harmful form. The study highlights the use of a native polar microalga as a means of phytoremediation in Antarctica where imported microbes are prohibited. Since 1959, Antarctica has been a protected region to preserve its dynamic ecosystems, but it is increasingly vulnerable to climate change and pollution. One of the anthropogenic disturbances in the continent is diesel spillage. Due to the extreme polar environment, natural attenuation of spilled diesel is severely hindered; hence, the problem calls for an effective and sustainable solution. This laboratory study proved that Antarctic microalga was capable of removing diesel (57.6%) through biodegradation and biosorption in the span of nine days. Meanwhile, mixotrophic cultivation triggered the vacuolar activities and potentially stimulated lipid assimilation in the cells. The microalgal-based process offers a cheap alternative in water decontamination while bearing the economic potential through the secretion of valuable products, such as biolipids

    Integration of Copperas and <i>Moringa oleifera</i> Seeds as Hybrid Coagulant for Turbidity and Ammonia Removal from Aquaculture Wastewater

    Get PDF
    The rapid development of the aquaculture industry has contributed to the high amount of nutrients in wastewater that subsequently led to eutrophication and deterioration of water quality. Aquaculture wastewater consists of uneaten fish feed, fecal and other excretion or residue of chemicals used. Thus, this study aimed to evaluate the performance of hybrid coagulants of Moringa oleifera (MO) and copperas for aquaculture wastewater treatment. In this present study, different formulations of MO and copperas were explored in the coagulation treatment of aquaculture wastewater using a jar test experiment. The FTIR and SEM analysis are used to determine the morphology and surface of MO. This study focuses on the effect of coagulant aids formulation, coagulant dosage, the effect of initial pH and coagulation time on turbidity and ammonia removal in the coagulation of aquaculture wastewater. The finding shows that the highest removal of turbidity and ammonia was obtained with the use of 80% MO and 20% copperas at the condition of initial pH of 6 at 20 min of coagulation time, with the highest percentage removal of 66% and 91%, respectively. The coagulation isotherm of hybrid coagulant 80:20 is well described with the Freundlich isotherm model which describes the surface heterogeneity

    Utilisation of oil palm’s empty fruit bunch spikelets for oil-spill removal

    No full text
    Agricultural sorbents have received attention for their effectiveness in oil removal. In Malaysia, oil palm’s empty fruit bunch (EFB) spikelets are an abundant agricultural waste that provides a non-toxic, renewable resource of cellulosic materials. In this study, the effectiveness of EFB spikelets to remove oil spills from seawater pollution in a filter system was investigated and the best optimisation approach for filtering conditions was determined. Experiments for oil spill clean-up were performed using a filter-based oil sorption system with a series of conditions such as temperature, time, packing density, and oil concentration to evaluate sorption capacity, oil and water absorbed efficiency. Fourier transform infrared spectroscopy (FTIR) was used to characterise the physicochemical properties of untreated and treated EFB fibres. Based on one-factor-at -a-time (OFAT) analysis conducted at 160 °C for 30 min on 0.1 g/cm3 of packing density containing 25% diesel, 8.667 mL of oil and 5 mL of water was absorbed. In response surface methodology (RSM), the three parameters of temperature, packing density and diesel concentration were observed as significant. From RSM fitting model analysis, the predicted value obtained for both oil and water absorbed were 8.805 and 5.213 mL, respectively. The experimental RSM values of 9 and 5 mL of oil and water absorbed were obtained. The result demonstrated the validity of the model as the experimental RSM values were close to the RSM model’s prediction. As compared to OFAT, the RSM method is more efficient in oil removal. This research contributes to a better knowledge of the usage of a natural sorbent as a method of diesel pollution remediation

    Application of Cogon Grass (Imperata cylindrica) as biosorbent in diesel-filter system for oil spill removal

    No full text
    Imperata cylindrica, often known as cogon grass, is a low-cost and useful sorbent for absorbing oil and optimising processes. The effects of temperature, time, packing density and oil concentration on oil absorption efficiency were investigated and optimised utilising one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. Temperature and oil concentration are two important variables in the oil absorption process. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were used to characterise cogon grass. After treatment and oil absorption, the FTIR method indicated new formation and deformation of functional groups, while SEM revealed changes in the surface and texture of cogon grass, including a roughened and jagged surface. Validation of the RSM model yielded 93.54% efficiency with 22.45 mL oil absorbed at 128 °C temperature and 36 (v/v)% oil concentration while keeping packing density and time constant at 30 min and 0.20 g/cm3, respectively. This study may provide an insight into the usefulness of a statistical approach to maximise the oil absorption of cogon grass as an oil sorbent

    Rice straw as a natural sorbent in a filter system as an approach to bioremediate diesel pollution

    Get PDF
    Rice straw, an agricultural waste product generated in huge quantities worldwide, is utilized to remediate diesel pollution as it possesses excellent characteristics as a natural sorbent. This study aimed to optimize factors that significantly influence the sorption capacity and the efficiency of oil absorption from diesel-polluted seawater by rice straw (RS). Spectroscopic analysis by attenuated total reflectance infrared (ATR-IR) spectroscopy and surface morphology characterization by variable pressure scanning electron microscopy (VPSEM) and energy-dispersive X-ray microanalysis (EDX) were carried out in order to understand the sorbent capability. Optimization of the factors of temperature pre-treatment of RS (90, 100, 110, 120, 130 or 140 °C), time of heating (10, 20, 30, 40, 50, 60 or 70 min), packing density (0.08, 0.10, 0.12, 0.14 or 0.16 g cm−3) and oil concentration (5, 10, 15, 20 or 25% (v/v)) was carried out using the conventional one-factor-at-a-time (OFAT) approach. To eliminate any non-significant factors, a Plackett–Burman design (PBD) in the response surface methodology (RSM) was used. A central composite design (CCD) was used to identify the presence of significant interactions between factors. The quadratic model produced provided a very good fit to the data (R2 = 0.9652). The optimized conditions generated from the CCD were 120 °C, 10 min, 0.148 g cm−3 and 25% (v/v), and these conditions enhanced oil sorption capacity from 19.6 (OFAT) to 26 mL of diesel oil, a finding verified experimentally. This study provides an improved understanding of the use of a natural sorbent as an approach to remediate diesel pollution

    Application of Cogon Grass (Imperata cylindrica) as Biosorbent in Diesel-Filter System for Oil Spill Removal

    No full text
    Imperata cylindrica, often known as cogon grass, is a low-cost and useful sorbent for absorbing oil and optimising processes. The effects of temperature, time, packing density and oil concentration on oil absorption efficiency were investigated and optimised utilising one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. Temperature and oil concentration are two important variables in the oil absorption process. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were used to characterise cogon grass. After treatment and oil absorption, the FTIR method indicated new formation and deformation of functional groups, while SEM revealed changes in the surface and texture of cogon grass, including a roughened and jagged surface. Validation of the RSM model yielded 93.54% efficiency with 22.45 mL oil absorbed at 128 °C temperature and 36 (v/v)% oil concentration while keeping packing density and time constant at 30 min and 0.20 g/cm3, respectively. This study may provide an insight into the usefulness of a statistical approach to maximise the oil absorption of cogon grass as an oil sorbent

    Oil palm's empty fruit bunch as a sorbent material in filter system for oil-spill clean up

    No full text
    Oil pollution such as diesel poses a significant threat to the environment. Due to this, there is increasing interest in using natural materials mainly from agricultural waste as organic oil spill sorbents. Oil palm’s empty fruit bunch (EFB), a cost-effective material, non-toxic, renewable resource, and abundantly available in Malaysia, contains cellulosic materials that have been proven to show a good result in pollution treatment. This study evaluated the optimum screening part of EFB that efficiently absorbs oil and the physicochemical characterisation of untreated and treated EFB fibre using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The treatment conditions were optimised using one-factor-at-a-time (OFAT), which identified optimal treatment conditions of 170 °C, 20 min, 0.1 g/cm3, and 10% diesel, resulting in 23 mL of oil absorbed. The predicted model was highly significant in statistical Response Surface Methodology (RSM) and confirmed that all the parameters (temperature, time, packing density, and diesel concentration) significantly influenced the oil absorbed. The predicted values in RSM were 175 °C, 22.5 min, 0.095 g/cm3, and 10%, which resulted in 24 mL of oil absorbed. Using the experimental values generated by RSM, 175 °C, 22.5 min, 0.095 g/cm3, and 10%, the highest oil absorption achieved was 24.33 mL. This study provides further evidence, as the data suggested that RSM provided a better approach to obtain a high efficiency of oil absorbed
    corecore