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ABSTRACT 

 

 

In various prediction techniques of reverberation time such as Sabine and Eyring 

equation, ray-method, and numerical method require main parameters such absorption 

coefficient and dimensions. Normally, these parameters are obtained from references 

or/and measurements that necessitate special equipment and skills. On that matters, the 

authors have proposed a new practical technique to identify absorption coefficient and 

dimension of rooms. The technique comprises Subsystem_1 and Subsystem_2, each of 

which uses photographic images. Subsystem_1 uses a Gray Level Co-occurrence Matrix 

(GLCM) and integrate with Neural Network (NN) to identify the absorption coefficient 

of material. While, Subsystem_2 uses Dimension Vision Predictor (DVP) with the 

author’s “ruler method” to identify the dimensions. Examinations conducted in practical 

rooms revealed good correlation coefficient of r ≥ 0.90 for Subsystem_1 and r ≥ 0.99 

for Subsystem_2. Finally, the System using NN gave inconsistent results, however, 

FEA revealed consistent results with r   0.8 
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INTRODUCTION 

 

Nowadays, various systems have been proposed to predict a room’s acoustic properties, 

e.g RT, and the computational systems are quite popular in this field (e.g. ray tracing 

and numerical method) (Hodgson, 2009, Okuzono, 2010). There are two essential 

factors that make the RT values within appropriate ranges; i. dimensions of classroom, 

and ii. absorption coefficients of materials. Those kinds of factors are usually obtained 

from measurements, literatures, references and so on, which requires extra time and 

expertise. An innovative system has been proposed by Hodgson (Hogdson, 2005) to 

identify the absorption coefficients of materials into the classrooms using statistical 

method (multivariable linear-regression techniques). Although it is a simple and fast 

system, it is still inadequate because it only can be used for determining the materials’ 
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absorption coefficients in classrooms at University of British Columbia.  

Aiming for practical application, this study is to propose efficient systems using 

photo images technique to predict the factors (as mentioned above) and to show their 

reliability when they are applied. In the subsystems, three techniques are used; i. image 

processing (gray level co-occurrence matrix (GLCM)), ii. Dimension Vision Predictor 

(DVP), and iii. Neural Network (NN). Using the combinations of the techniques, two 

systems are built: Subsystem_1 using GCLM and NN to determine absorption 

coefficients of material surfaces in classrooms; and Subsystem_2 using DVP to 

determine the particular dimensions of rooms.  

The accuracy of the two systems is examined using actual rooms to investigate 

the identification capability of two systems. The absorption coefficients and dimension 

identification from two subsystems are used to compute RTs of actual rooms in System 

using NN. The computed RTs are then compared with RTs by FEA using actual 

absorption coefficients and dimensions.  

Using these subsystems, we can ascertain room parameters easily, rapidly, and at 

a low cost compared using physical measurement. The systems are useful for 

researchers, practical engineers, and designers to estimate sound fields of existing 

rooms. 

 

THEORITICAL DESCRIPTION 

 

i. Gray Level Co-occurrence Matrix (GLCM)  

 

The GLCM technique has been implemented successfully in texture feature 

analysis to analyze texture features of an image (Honeycutt and Plotnick, 2008). To 

date, no reported study has applied GLCM to acoustic fields.  

A GLCM is generated from a square matrix (Ng) with size determined according 

to the gray levels of pixels of an image that can be captured using a digital camera. An 

image includes numerous pixels, each of which presents a level of gray. A square matrix 

Ng is formed at these pixels.  

A GLCM comprises numerous elements, each designated as probability Pd,θ (i,j). 

The Pd,θ (i,j) represents pixels with gray levels i and j, which are counted at certain 

distance d (e.g. d = 1 or 2) and direction angle θ (θ = 0°, 45°, 90° and 135°) between the 

two image pixels. Haralick (Haralick, et. al. 1973) provides addition explanation of 

GLCM. 

Figure 1 presents an example of computation of the GLCM with size i = 3 and j 

= 3. Here, i and j are taken from the gray level of an image. To count probability 

P1,0°(3,0), by reference to Figure 1(a), it is three intensities of pair pixels (i = 3, j = 0) at 

distance of two pixels d = 1; direction angle θ is counted as 0°. A similar process can be 

conducted at P1,90° (2,2). The intensity at that probability is 2. Generally, it is difficult to 

implement GLCM directly. Therefore, Haralick proposed 14 coefficients of texture 

features. The four commonly used Haralick coefficients are listed below. 
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Figure 1: Computed GLCM. (a) Gray level of an image (b) GLCM for element P1,0° 

(3,0) and at P1,90° (2,2). 

 

In those equations, cont is the contrast used to measure the image contrast, corr 

is the correlation used to measure image linearity, and ASM is the angular second 

moment used to measure image smoothness. Also, hom represents the homogeneity 

used to indicate homogeneity in uniform images. In addition, μx, μy, σx, and σy are the 

respective means and standard deviations of the probability matrix of GLCM obtained 

by summing the row. 

 

ii. Dimension Vision Predictor (DVP)  

 

Several techniques are used to measure dimensions using a camera. Some 

techniques demand special equipment and camera lens calibration. Therefore, aiming at 

practical use, this study chooses survey-from-photo because it can be implemented 

directly from any ordinary camera without calibrating the camera lens.  

Generally, survey-from-photo identifies the dimension based on two images. 

The images are marked with two corresponding points. Then both are connected to 

make a line at an object to measure. A reference dimension is necessary to achieve an 

accurate measurement. The reference dimension is a dimension obtained from an object 

that is known exactly. Here, survey-from-photo uses that object dimension as a 

reference to standardize the scale range to the images.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Principle of stereo-vision 
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The basic concept of survey-from-photo is that of the "stereo vision" principle, 

which uses two cameras to measure dimensions of an object, as presented in Figure 2. 

One camera is located at Cr and another at Cl with intervening distance (d). The 

cameras are focused at point P1(x1, y1, z1) and P2(x2, y2, z2) with certain focus length (f), 

which are all obtainable at the camera lens. At f, two image points are apparent at the 

image P1r, P1l, P2r, and P2l with respective coordinates (x1r,y1r), (x1l,y1l), (x2r,y2r), and 

(x2l,y2l). The coordinates (x1r,y1r), (x1l,y1l), (x2r,y2r), and (x2l,y2l) are calculable by 

considering the center of image as the origin. To obtain the coordinate of P1(x1,y1,z1) 

and P2(x2,y2,z2), the equation is definable simply as shown below. 
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The distance (L) between P1 and P2 can be simplified as; 
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x
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iii. Neural Network (NN)  

 

Basically, NN architecture involves three layers; input layer, hidden layer and 

output layer. Each layer consists of number of nodes to construct a network connection 

as shown in Figure 3. Detail explanation of NN can be referred to previous paper 

(Yahya, M.N, et. al., 2010).  

Before implementing the NN, a database to be analyzed is transformed (0.1–0.9) 

to standardize the range. Overlearning occurs during the NN learning process. To 

surmount the problem, a database is divided into three subsets: a training subset, a 

validation subset, and a test subset. The training subset is used to train the NN. The 

validation subset is used to validate the learning process, and the test subset is used to 

investigate the prediction performance. The proportion of each subset is chosen 
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randomly. To obtain the optimum network, 2–15 hidden nodes are used. The mean 

square error (MSE) and correlation coefficients (r) are used for assessment. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3: Architecture of NN 

 

METHODOLOGY OF SUBSYSTEM_1 

 

i. Material Surface Capturing  

 

For this study, six material surfaces were taken of Oita University rooms, as 

portrayed in Figure 4. Surfaces (a), (b), (c), (d), (e), and (f) are, respectively, surfaces 

for walls, doors, floors, windows, ceilings, and carpets. To perform material surfaces 

capturing, an ordinary camera is useful. Regarding standardization of images, a digital 

single-lens reflex (DSLR) camera with Sigma 50 mm f2.8 lens was used. In addition, 

the distance from the camera to the surface material was set to 40 mm with autofocus 

mode, whereas the respective lens settings for aperture, shutter speed and ISO speed 

were f2.8, 1/80, and 100. To analyze the accuracy of Subsystem 1, 368 images of 

surfaces were captured at different locations in three rooms. The proportions of images 

of material surfaces are: surface (a) = 69 images, surface (b) =71 images, surface (c) = 

66 images, surface (d) = 56 images, surface (e) = 67 images, and surface (f) = 40 

images. All images were analyzed using GLCM.  

 

 
 

 
 

 

Figure 4: Sample images of material surfaces for (a) wall, (b) door, (c) floor,  

(d) window (e) ceilling and (f) carpet 

 

ii. GLCM Implementation  

 

(d) (e) (f) 

(a) (b) (c) 
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The GLCM was computed for the 368 images of surface materials using the 

following settings: i. d = 1, θ = 0°; ii. d = 1, θ = 45°; iii. d = 1, θ = 90°; and iv. d = 1, θ = 

135°. Each Haralick's coefficient provides four values based on settings, but only an 

average value of four values is considered hereinafter. The average value is designated 

as the coefficient value for this study. Because of variations of brightness and texture 

features in our experiment, the ranges of the coefficient values become too wide to be 

processed. To overcome this problem, a limitation for each coefficient value was made 

using the means ( x ) and standard deviation (σ). The limitations are ( x  ˗ σ) and ( x  + 

σ), respectively, for low limitation and high limitation. The coefficient values beyond 

the limitations were removed from further investigation.  

 

iii. FFNN Implementation  

 

Coefficient values in the limitation were fed into NN. Four coefficients (cont, 

corr, ASM, and hom) and the material surface were used respectively as input nodes and 

output nodes. Then the numbers of hidden nodes were set up as described previously. In 

addition, the learning algorithm chosen was Levenberg–Marquardt (trainlm) because it 

is faster and more efficient). To obtain the optimum network, a trial and error scheme 

was conducted by combining all those nodes (e.g. [i; h; o] for [input node; hidden node; 

output node]; example combination [4, 6, 1], [4,10,1], … or [4, 9, 1]) but only one 

combination that provided good performance was selected. 

 

METHODOLOGY OF SUBSYSTEM_2 

 

i. DVP Implementation  

 

The same camera for Subsystem_1 was used with focus lenses of 18–70 mm to 

capture two images at one view. The camera was set in autofocus mode. Figure 5 

presents an example of predicting dimensions of objects in one image at one view. 

Lines connect corresponding points at objects. For example, to measure blackboard 

object dimensions, four corresponding points of A, B, C, and D must be obtained. Each 

corresponding point is connected to form lines: line 9, 10, 11, and 12. As described 

above, the survey-from-photo requires a standard scale. Therefore, the authors propose 

to use a ruler that is attached at an appropriate view as reference dimension in this "ruler 

method". A ruler is preferred because it is practical and simple to attach to the view 

region to be measured.  

To investigate the repeatability of dimension prediction, 100 dimensions at 

several objects were examined. The predicted dimensions using DVP as Subsystem 2 

were compared with measured dimensions obtained from laser measurements using a 

laser indicator (LS-501A; MAX Co., Ltd.). The MSE and correlation coefficient (r) are 

applied for assessments. 
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Figure 5: Identification dimension 

 

 

METHODOLOGY OF SYSTEM 

 

i. FEA Implementation  

 

To obtain the RTs database of rooms which are used for construction of NN, 20 

rooms with different volumes were simulated using FEA. In simulation, six absorption 

coefficients of surface materials at wall, door, window, floor, ceiling and furniture were 

considered in this study. Basically, the absorption coefficient values (ranging 0 to 1) are 

depending on the type of material either reflective or absorptive. To consider all the 

absorption coefficient values, it will increase the computing time and cost of FEA. To 

overcome the problem, two kind of conditions were considered; i. dead: (α_w = 0.08; 

α_dr = 0.1; α_wdw = 0.4; α_flr = 0.06; α_clg = 0.4; α_f = 0.4 ); ii. live: (α_w = 0.02; 

α_dr = 0.02; α_wdw = 0.04; α_flr = 0.02; α_clg = 0.2; α_f = 0.4), where α_w, α_dr, 

α_wdw, α_flr, α_clg, and α_f representing absorption coefficient for wall, door, 

window, floor, ceiling and furniture, respectively. Dead is the maximum value of 

absorption coefficient, whereas live is the minimum value of absorption coefficient. 

These conditions were obtained from several surface materials at Oita University's 

room. Furthermore, another 6 rooms were simulated using FEA. These rooms were used 

to test the performance of NN.  

 

ii. NN Implementation  

 

Database of 1220 RTs obtained from 20 simulated rooms by FEA were fed into NN. 

The database was divided into two subsets one is train subset (70% of database) and the 

other is validate subset (30% of database). To confirm the reliability of prediction, the 

360 testing database of RTs obtained from the six simulated rooms were involved. 

 

 

RESULTS AND DISCUSSION 

 

i. Subsystem_1 

 

Figure 6 shows the range of four coefficient value for six material. Each of 

coefficient value potray a limitation. The limitations indicated that only 53.8% of 360 
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images of surfaces (surface (a) = 39 images, surface (b) = 50 images, surface (c) = 27 

images, surface (d) = 26 images, surface (e) = 30 images, and surface (f) = 20 images) 

were used for NN as input nodes because of limitations. Before feeding into NN, a 

database of images of surface materials was divided into three subsets: 60% of the 

database for training; 20% of the database for validation, and 20% of the database for 

testing. No specific proportions for NN subsets were set. At this point, the proportions 

of subsets are chosen arbitrarily. Generally, the training subset should be larger than the 

validation subset and the testing subset.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Limitation of coefficient values for six material 

 

In this study, the absorption coefficients (α) of six material surfaces are referred 

from reports of the relevant literature (Maekawa and Lord, 1993). By identifying the 

material surfaces, we are able to ascertain the absorption coefficients of surfaces 

simultaneously. To identify the material surfaces, we used a classification number (1–5) 

to represent the output parameter: 1. Surface (a) (α = 0.07), 2. Surface (b) and (c) (α = 

0.02), 3. Surface (d) (α = 0.04), 4. Surface (e) (α = 0.4) and 5. Surface (f) (α = 0.06).  

Results of analyses show that the optimum network [4, 6, 1] with MSE ≤ 0.0018 

and r ≥ 0.9 was obtained for both training and validation subsets. To confirm their 

performance, the testing subset (39 surface images) showed MSE ≤ 0.07 with r ≥ 0.9. 

Subsystem_1 performance is inferred to be good at this stage.  

The restrictions of Subsystem_1 are the following: 1. It can only identify the 

material surfaces depending on the database of material surfaces used. If more databases 

of material surfaces were used, then more material surfaces can be identified. 2. 

Generally, the real absorption coefficients of material surfaces in rooms depend on the 

material thickness, presence or absence of an air layer and absorptive layer, and so on. 

Then, it is difficult to obtain a real absorption coefficient only a surface form image. For 

practical usage, the author referred to related reports of the absorption coefficient. 

 

ii. Subsystem_2 

 

From analyses of Subsystem_2, the results are given in Figure 7, which revealed 

a high correlation coefficient (r ≥ 0.99) between predicted values using Subsystem_2 

and measured values with MSE ≤ 0.009. Results show that Subsystem 2 provided high 

reliability using no physical measurements. 

 

iii. System  
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From the analysis, the optimum network is [4,11,1] with train and validate 

database indicate MSE ≤ 0.0012 with r ≥ 0.9 for both of them. Furthermore, for 

confirmation the testing database indicated MSE ≤ 0.007 and r ≥ 0.80. At this point, the 

NN that used for System are developed. It gives good reliability of prediction RTs on 

six simulated rooms. 

 

iv. Implementation at actual room 

 

Four types of actual rooms were utilized to investigate the predicting reliability 

of Sub-systems and System. At Sub-system-1, the 294 surface images (surface (a) = 60 

surface images, surface (b) = 53 surface images, surface (c) = 48 surface images, 

surface (d) = 63 surface images, surface (e) = 41 surface images and surface (f) = 25 

surface images) were captured. However, only 180 surface images were selected after 

normalization ( x ). These surface images were fed into NN. At Sub-system-2, the target 

objects were room, door, window and furniture (desk and chair). These objects were 

captured and fed into DVP to predict the dimensions. Later on, predictions from both 

Sub-systems were moved to the System using NN. Besides that, the prediction from 

Systems_1 and Subsystem_2 also moved to FEA. The prediction reliability of RT using 

System and FEA were examined. 

Figure 8 reveals that prediction by Subsystem_1 which gives high r ≥ 0.9. 

Unfortunately, predictions on 3 (Surface (d): window (α = 0.04)) showed inconsistent 

results. It is because 29% of 31 surface images indicated below limit at ASM. The 

window is a transparent and lighting reflection material. In this case of the transparent 

window, it is difficult to capture consistent surface images due to the material surface 

nature.  

Figure 9 shows the prediction results of dimension of room. Following the 

capturing procedure, the DVP produce high r ≥ 0.9 in predicting the dimensions.  

To predict RTs, the System (using NN) and FEA used same input parameters 

obtained from Subsystem_1 and Subsystem_2. The System provided inconsistent 

prediction with between FEA. On the other hand, by using the actual input parameter 

obtained from four rooms the FEA gave a consistent prediction. Figure 10 depicts the 

correlation between FEA actual and FEA predicted is more than 0.80. From the 

observation, at the moment, the technique in Subsystem_1 and Subsystem_2 provided 

good prediction reliability when there are utilized with FEA. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Correlation for Subsystem_2 

 

 

 

 

 

 

 

 

 

 

Figure 8: Correlation for Subsystem_1 

(actual room) 
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CONCLUSION 

 Aiming for practical application prediction technique of absorption coefficient 

and dimension using photographic image and NN were developed. In Subsystem_1 

consists of GLCM and NN to predict the absorption coefficient. While in Subsystem_2 

consists of DVP to predict the dimension. The result from Subsystem_1 and 

Subsystem_2 show good reliability with r > 0.9. The System and FEA are used to 

predict RTs. By the comparison between them, it shows that FEA offer more consistent 

result with the r   0.8. From the averall results, we can concluded that by applying the 

Subsystem_1 and System 2, the practical value of absorption coefficeint and dimension 

could be predicted. At this stage, the predicted value from Subsystem_1 and 

Subsystem_2 are useful to predict the RTs of room by using the consistent method such 

as FEA, BEM, and Empirical Method 
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