212 research outputs found

    The effects of cannabidiol on aqueous humor outflow and trabecular meshwork cell signaling

    Get PDF
    Intraocular pressure (IOP) is regulated primarily through aqueous humor production by ciliary body and drainage through uveoscleral and trabecular meshwork (TM) tissues. The goal of this study was to measure the effect of non-psychotropic cannabidiol (CBD) on aqueous humor outflow through TM and assess the effect of CBD on the TM cell signaling pathways that are important for regulating outflow. Perfused porcine eye anterior segment explants were used to investigate the effects of CBD on aqueous humor outflow. Cultured porcine TM cells were used to study the effects of CBD on TM cell contractility, myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation, and RhoA activation. In the anterior segment perfusion experiments, aqueous humor outflow was increased significantly within 1 h after adding 1 ĀµM CBD and the effect was sustained over the 5 h of measurement. Treatment of TM cells with 1 ĀµM CBD significantly decreased TM cell-mediated collagen contraction, inhibited phosphorylation of MLC and MYPT1, and reduced RhoA activation. Our data demonstrate, for the first time, that as a potential therapeutic agent for lowering intraocular pressure, CBD can enhance aqueous humor outflow and modify TM cell signalin

    Soluble toll like receptor 2 (TLR-2) is increased in saliva of children with dental caries

    Get PDF
    Background Dental caries is the most common microbial disease affecting mankind. Caries risk assessment methods, identification of biomarkers and vaccine development strategies are being emphasized to control the incidence of the largely preventable disease. Pattern recognition receptors such as the toll like receptors (TLR) have been implicated as modulators of host-microbial interactions. Soluble TLR-2 and its co-receptor, CD14 identified in saliva can bind the cell wall components of cariogenic bacteria and modulate the disease process. The objective of this study is to determine the potential of salivary sTLR-2 and sCD14 as biomarkers of caries activity and indirect measures of the cariogenic bacterial burden. Methods Unstimulated whole saliva was collected from twenty caries free and twenty caries active children between the ages of 5 and 13 years. The concentration of sCD14 and sTLR-2 together with that of the cytokine IL-8 reported to be increased in dental caries was assessed by the enzyme linked immunosorbent assay. Results While the level of sCD14 and that of IL-8 was equivocal between the two groups, the sTLR-2 concentration in caries active saliva was significantly higher than that in caries free saliva. Conclusions The sTLR-2 in saliva could serve as a potential biomarker for caries activity

    Free space-coupled superconducting nanowire single photon detectors for infrared optical communications

    Get PDF
    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% +/- 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 +/- 0.11 {\mu}m starting from a fiber source at wavelength, {\lambda} = 1.55 {\mu}m. We demonstrated efficient photon counting on a detector with an 8 x 7.3 {\mu}m^2 area. We measured a dark count rate of 95 +/- 3.35 kcps and a system detection efficiency of 1.64% +/- 0.13%. We explain the key steps that are required to further improve the coupling efficiency.Comment: 16 pages, double-space

    The Effect of Saturated Fatty Acid on the Expression of Apoptotic and Fibrotic Proteins in Renal Tubular Epithelial Cells

    Full text link
    Diabetic Nephropathy, triggered by diabetes, is a kidney disease with severe health consequences and is a high economic burden. Literature suggests that the deterioration of kidney function correlates best with the degree of renal tubulointerstitial fibrosis. Proximal tubule epithelial cells can orchestrate renal fibrosis, as a result of fatty acid accumulation, also known as lipotoxicity. The objective of the study is to evaluate the effect of saturated fatty acid on renal tubular epithelial cells. Human kidney proximal tubule cells (HK-2) were cultured in 5% FBS/DMEM/streptomycin/Hepes and incubated at 37Ā°C until cells are 90% confluent. Palmitic acid (PA) was prepared in serum-free medium with 1% Bovine serum albumin (BSA) before cells were treated for 24 hours and 48 hours. After treatment, cell lysates were extracted, quantified by DC assay and analyzed by Western blot. As expected, BSA increased Bax and decreased BCL-2 proteins in HK-2 cells. Interestingly, a slight increase in BCL-2 and a decrease in Bax and Cyclin D1 proteins were observed in PA-treated cells after 24 hours. These changes were even greater when the cells were exposed to PA for 48 hours. Additionally, we observed an increase in fibronectin after chronic PA treatment. These results suggest the effect of PA on apoptosis related proteins is independent of BSA in renal tubular epithelial cells

    Silent progression in disease activity-free relapsing multiple sclerosis.

    Get PDF
    ObjectiveRates of worsening and evolution to secondary progressive multiple sclerosis (MS) may be substantially lower in actively treated patients compared to natural history studies from the pretreatment era. Nonetheless, in our recently reported prospective cohort, more than half of patients with relapsing MS accumulated significant new disability by the 10th year of follow-up. Notably, "no evidence of disease activity" at 2ā€‰years did not predict long-term stability. Here, we determined to what extent clinical relapses and radiographic evidence of disease activity contribute to long-term disability accumulation.MethodsDisability progression was defined as an increase in Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 (or greater) from baseline EDSSā€‰=ā€‰0, 1.0-5.0, and 5.5 or higher, respectively, assessed from baseline to year 5 (Ā±1ā€‰year) and sustained to year 10 (Ā±1ā€‰year). Longitudinal analysis of relative brain volume loss used a linear mixed model with sex, age, disease duration, and HLA-DRB1*15:01 as covariates.ResultsRelapses were associated with a transient increase in disability over 1-year intervals (pā€‰=ā€‰0.012) but not with confirmed disability progression (pā€‰=ā€‰0.551). Relative brain volume declined at a greater rate among individuals with disability progression compared to those who remained stable (pā€‰<ā€‰0.05).InterpretationLong-term worsening is common in relapsing MS patients, is largely independent of relapse activity, and is associated with accelerated brain atrophy. We propose the term silent progression to describe the insidious disability that accrues in many patients who satisfy traditional criteria for relapsing-remitting MS. Ann Neurol 2019;85:653-666

    Small-scale societies exhibit fundamental variation in the role of intentions in moral judgment

    Get PDF
    Intent and mitigating circumstances play a central role in moral and legal assessments in large-scale industrialized societies. Although these features of moral assessment are widely assumed to be universal, to date, they have only been studied in a narrow range of societies. We show that there is substantial cross-cultural variation among eight traditional small-scale societies (ranging from hunter-gatherer to pastoralist to horticulturalist) and two Western societies (one urban, one rural) in the extent to which intent and mitigating circumstances influence moral judgments. Although participants in all societies took such factors into account to some degree, they did so to very different extents, varying in both the types of considerations taken into account and the types of violations to which such considerations were applied. The particular patterns of assessment characteristic of large-scale industrialized societies may thus reflect relatively recently culturally evolved norms rather than inherent features of human moral judgment

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation

    Get PDF
    OBJECTIVE: A novel approach to regulate obesity-associated adipose inflammation may be through metabolic reprogramming of macrophages (MĪ¦s). Broadly speaking, MĪ¦s dependent on glucose are pro-inflammatory, classically activated MĪ¦s (CAM), which contribute to adipose inflammation and insulin resistance. In contrast, MĪ¦s that primarily metabolize fatty acids are alternatively activated MĪ¦s (AAM) and maintain tissue insulin sensitivity. In actuality, there is much flexibility and overlap in the CAM-AAM spectrum in vivo dependent upon various stimuli in the microenvironment. We hypothesized that specific lipid trafficking proteins, e.g. fatty acid transport protein 1 (FATP1), would direct MĪ¦ fatty acid transport and metabolism to limit inflammation and contribute to the maintenance of adipose tissue homeostasis. METHODS: Bone marrow derived MĪ¦s (BMDMs) from Fatp1 (-/-) and Fatp1 (+/+) mice were used to investigate FATP1-dependent substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. We also generated C57BL/6J chimeric mice by bone marrow transplant specifically lacking hematopoetic FATP1 (Fatp1 (B-/-)) and controls Fatp1 (B+/+). Mice were challenged by high fat diet (HFD) or low fat diet (LFD) and analyses including MRI, glucose and insulin tolerance tests, flow cytometric, histologic, and protein quantification assays were conducted. Finally, an FATP1-overexpressing RAW 264.7 MĪ¦ cell line (FATP1-OE) and empty vector control (FATP1-EV) were developed as a gain of function model to test effects on substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. RESULTS: Fatp1 is downregulated with pro-inflammatory stimulation of MĪ¦s. Fatp1 (-/-) BMDMs and FATP1-OE RAW 264.7 MĪ¦s demonstrated that FATP1 reciprocally controled metabolic flexibility, i.e. lipid and glucose metabolism, which was associated with inflammatory response. Supporting our previous work demonstrating the positive relationship between glucose metabolism and inflammation, loss of FATP1 enhanced glucose metabolism and exaggerated the pro-inflammatory CAM phenotype. Fatp1 (B-/-) chimeras fed a HFD gained more epididymal white adipose mass, which was inflamed and oxidatively stressed, compared to HFD-fed Fatp1 (B+/+) controls. Adipose tissue macrophages displayed a CAM-like phenotype in the absence of Fatp1. Conversely, functional overexpression of FATP1 decreased many aspects of glucose metabolism and diminished CAM-stimulated inflammation in vitro. FATP1 displayed acyl-CoA synthetase activity for long chain fatty acids in MĪ¦s and modulated lipid mediator metabolism in MĪ¦s. CONCLUSION: Our findings provide evidence that FATP1 is a novel regulator of MĪ¦ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation in vitro and increased local and systemic components of the metabolic syndrome in HFD-fed Fatp1 (B-/-) mice. In contrast, gain of FATP1 activity in MĪ¦s suggested that Fatp1-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated

    CD1 Mouse Retina Is Shielded From Iron Overload Caused by a High Iron Diet

    Get PDF
    Citation: Bhoiwala DL, Song Y, Cwanger A, et al. CD1 mouse retina is shielded from iron overload caused by a high iron diet. Invest Ophthalmol Vis Sci. 2015;56:5344-5352. DOI:10.1167/iovs.15-17026 PURPOSE. High RPE iron levels have been associated with age-related macular degeneration. Mutation of the ferroxidase ceruloplasmin leads to RPE iron accumulation and degeneration in patients with aceruloplasminemia; mice lacking ceruloplasmin and its homolog hephaestin have a similar RPE degeneration. To determine whether a high iron diet (HID) could cause RPE iron accumulation, possibly contributing to RPE oxidative stress in AMD, we tested the effect of dietary iron on mouse RPE iron. METHODS. Male CD1 strain mice were fed either a standard iron diet (SID) or the same diet with extra iron added (HID) for either 3 months or 10 months. Mice were analyzed with immunofluorescence and Perls' histochemical iron stain to assess iron levels. Levels of ferritin, transferrin receptor, and oxidative stress gene mRNAs were measured by quantitative PCR (qPCR) in neural retina (NR) and isolated RPE. Morphology was assessed in plastic sections. RESULTS. Ferritin immunoreactivity demonstrated a modest increase in the RPE in 10-month HID mice. Analysis by qPCR showed changes in mRNA levels of iron-responsive genes, indicating moderately increased iron in the RPE of 10-month HID mice. However, even by age 18 months, there was no Perls' signal in the retina or RPE and no retinal degeneration. CONCLUSIONS. These findings indicate that iron absorbed from the diet can modestly increase the level of iron deposition in the wild-type mouse RPE without causing RPE or retinal degeneration. This suggests regulation of retinal iron uptake at the blood-retinal barriers

    Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis

    Get PDF
    Objective A major challenge in multiple sclerosis (MS) research is the understanding of silent progression and Progressive MS. Using a novel method to accurately capture upper cervical cord area from legacy brain MRI scans we aimed to study the role of spinal cord and brain atrophy for silent progression and conversion to secondary progressive disease (SPMS). Methods From a single-center observational study, all RRMS (n = 360) and SPMS (n = 47) patients and 80 matched controls were evaluated. RRMS patient subsets who converted to SPMS (n = 54) or silently progressed (n = 159), respectively, during the 12-year observation period were compared to clinically matched RRMS patients remaining RRMS (n = 54) or stable (n = 147), respectively. From brain MRI, we assessed the value of brain and spinal cord measures to predict silent progression and SPMS conversion. Results Patients who developed SPMS showed faster cord atrophy rates (-2.19%/yr) at least 4 years before conversion compared to their RRMS matches (-0.88%/yr, p < 0.001). Spinal cord atrophy rates decelerated after conversion (-1.63%/yr, p = 0.010) towards those of SPMS patients from study entry (-1.04%). Each 1% faster spinal cord atrophy rate was associated with 69% (p < 0.0001) and 53% (p < 0.0001) shorter time to silent progression and SPMS conversion, respectively. Interpretation Silent progression and conversion to secondary progressive disease are predominantly related to cervical cord atrophy. This atrophy is often present from the earliest disease stages and predicts the speed of silent progression and conversion to Progressive MS. Diagnosis of SPMS is rather a late recognition of this neurodegenerative process than a distinct disease phase. ANN NEUROL 202
    • ā€¦
    corecore