6 research outputs found

    Mechanical and Morphological Properties of HDPE: PP and LDPE: PP Polymer Blend Composites Reinforced with TiO2 particles

    Get PDF
    In this research two groups of polymer blends have been prepared First group included (High density polyethylene (HDPE): Polypropylene (PP))While the Second group(included Low density polyethylene (LDPE): Polypropylene (PP)) both groups prepared withpolypropylene of (20% and 80%). From the results of tensile test for the prepared blends it has been showed that the optimum blending ratio was (20%LDPE:80%PP and 20%HDPE:80%PP) which thenreinforced with (2, 5 and 8wt%) oftitanium dioxide (TiO2), particle size (0.421μm). Titaniaparticles weremechanically mixed with the polymers prior tomelt mixing for better dispersion.Polymerblend composites were obtained by using single screw extruder. Results showed that mechanical properties increased as titania content increased except elongation.Furthermore the result recorded highest values ofimpact strength and fracture toughness at2%wt TiO2which is 312 Mpa and 572.8Mparespectively,for the polymer blend (20%HDPE: 80%PP) composite and for the polymer blend (20%LDPE: 80%PP) composites the impact strength and fracture toughness are 262.5Mpa and 468 Mpa respectively.The mechanical properties values of 20%HDPE: 80%PP is higher than 20%LDPE: 80%PP polymer blendcomposites. Scanningelectron microscopy (SEM) imagesshowed that there isbonding developed between TiO2 and polymer blends in some regions

    Stuctural, optical and radiation shielding properties of zinc boro-tellurite alumina glasses

    Get PDF
    In this work, boro-telluride glasses with additional zinc, aluminum, and alkali–alkaline modifiers have been synthesized using the melt-quenching–annealing method. Six glasses were fabricated with composition of [(60 − x)B₂O₃–(10 + x)TeO₂–10ZnO–10Al₂O₃ 5Li₂O–5MgO] all in mol% and x varied from 0, 10, 20, 30, 40 and 50. The aim of this work is to understand the effect of changing the main glass former from B₂O₃ → TeO₂, to obtain new optical materials. To confirm the amorphous nature of these six glasses, X-ray diffraction was characterized for all six glasses from 10° to 80°. Optical absorption with wavelength range 200–800 nm in room temperature was measured, and the optical absorption coefficient α(λ) calculated to obtain the cutoff wavelength. In addition, gamma photons shielding features of the prepared K1–K6 glasses were evaluated by means of some essential parameters such as mass attenuation coefficients (μ/ρ) and effective atomic number (Zeff) at five energies between 0.356 and 1.33 MeV. No significant difference between the theoretical and simulation μ/ρ values was found. The effective atomic number results indiacte that as the TeO₂ content increases, the photons’ attenuation increases. The number of interactions of gamma photons with K6 sample (which contains the maximum amount of TeO₂) is relatively high (in comparison to the rest of the samples), which results in more attenuation and thus better shielding features for K6

    Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications

    No full text
    Germanate-tellurite glasses with a composition of (75-x) TeO2-xGeO2–12.5ZnO-12.5BaO, where x = 0, 5, 10, and 20 mol%, were synthesized. A traditional melt-quenching-annealing process was used to fabricate these glasses, at 1000 °C for melting and 300 °C for five hours for annealing. X-ray diffraction was used to investigate the structural features of each sample between 10 °C and 80 °C to prove the amorphous nature of these glasses. Moreover, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) was employed to explore the functional groups of Te, Ge, and other elements. To study the transparency, cut-off wavelength, and other optical properties of the glasses, such as indirect, direct, and Urbach energy band gaps, optical absorption was measured in the range of 200–800 nm. Additionally, the radiation shielding properties for the germanium based-tellurite glasses were calculated using Monte Carlo N particle transport code (MCNP-5). The simulated results were compared with XCOM software and the results between the two methods closely agreed. The maximum mass attenuation coefficient varied between 47.305 and 50.620 cm2.g − 1 for TG1 and TG4 glasses respectively at 0.015 MeV. The effective atomic number (Zeff) for the prepared germanium based-tellurite glasses was evaluated and the results revealed that the maximum Zeff values were found at 0.04 MeV, varying between 48.24 and 49.98 for TG4 and TG1
    corecore