6 research outputs found

    Simultaneous quantification of GABAergic 3α,5α/3α,5β neuroactive steroids in human and rat serum

    Get PDF
    The 3α,5α- and 3α,5β-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Despite substantial information on the progesterone derivative (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone), the physiological significance of the other endogenous GABAergic neuroactive steroids has remained elusive. Here, we describe the validation of a method using gas chromatography-mass spectrometry to simultaneously identify serum levels of the eight 3α,5α- and 3α,5β-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone. The method shows specificity, sensitivity and enhanced throughput compared to other methods already available for neuroactive steroid quantification. Administration of pregnenolone to rats and progesterone to women produced selective effects on the 3α,5α- and 3α,5β-reduced neuroactive steroids, indicating differential regulation of their biosynthetic pathways. Pregnenolone administration increased serum levels of 3α,5α-THP (+1488%, p<0.001), (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC, +205%, p<0.01), (3α,5α)-3-hydroxyandrostan-17-one (3α,5α-A, +216%, p<0.001), (3α,5α,17β)-androstane-3,17-diol (3α,5α-A-diol, +190%, p<0.01). (3α,5β)-3-hydroxypregnan-20-one (3α,5β-THP) and (3α,5β)-3-hydroxyandrostan-17-one (3α,5β-A) were not altered, while (3α,5β)-3,21-dihydroxypregnan-20-one (3α,5β-THDOC) and (3α,5β,17β)-androstane-3,17-diol (3α,5β-A-diol) were increased from undetectable levels to 271 ± 100 and 2.4 ± 0.9 pg ± SEM, respectively (5/8 rats). Progesterone administration increased serum levels of 3α,5α-THP (+1806%, p<0.0001), 3α,5β-THP (+575%, p<0.001), 3α,5α-THDOC (+309%, p<0.001). 3α,5β-THDOC levels were increased by 307%, although this increase was not significant because this steroid was detected only in 3/16 control subjects. Levels of 3α,5α-A, 3α,5β-A and pregnenolone were not altered. This method can be used to investigate the physiological and pathological role of neuroactive steroids and to develop biomarkers and new therapeutics for neurological and psychiatric disorders

    Differential Effects of Ethanol on Serum GABAergic 3α,5α/3α,5β Neuroactive Steroids in Mice, Rats, Cynomolgus Monkeys, and Humans

    Get PDF
    Acute ethanol administration increases plasma and brain levels of progesterone and deoxycorticosterone-derived neuroactive steroids (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC) in rats. However, little is known about ethanol effects on GABAergic neuroactive steroids in mice, non-human primates or humans. We investigated the effects of ethanol on plasma levels of 3α,5α- and 3α,5β-reduced GABAergic neuroactive steroids derived from progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone using gas chromatography-mass spectrometry

    The role of neuroactive steroids in ethanol/stress interactions: proceedings of symposium VII at the Volterra conference on alcohol and stress, May 2008

    Get PDF
    This report summarizes the proceedings of the symposium VII on the role of neuroactive steroids in stress/alcohol interactions. The production of GABAergic neuroactive steroids, including (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC) is a consequence of both acute stress and acute ethanol exposure. Acute, but not chronic ethanol administration elevates brain levels of these steroids and enhances GABAA receptor activity. Neuroactive steroids modulate acute anticonvulsant effects, sedation, spatial memory impairment, anxiolytic-like, antidepressant-like and reinforcing properties of ethanol in rodents. Furthermore, these steroids participate in the homeostatic regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, it is not surprising that neuroactive steroids are involved in ethanol/stress interactions. Nevertheless, the interactions are complex and not well understood. This symposium addressed the role of neuroactive steroids in both stress and alcohol responses and their interactions. Professor Giovanni Biggio of the University of Cagliari, Italy presented the effects of juvenile isolation stress on neuroactive steroids, GABAA receptor expression and ethanol sensitivity. Professor Howard Becker of the Medical University of South Carolina, USA presented evidence for neuroactive steroid involvement in ethanol dependence and drinking behavior. Professor Patrizia Porcu of the University of North Carolina, USA described a potential neuroactive steroid biomarker that may predict heavy drinking in monkeys and mice. These presentations provide a framework for new theories on the nature of ethanol/stress interactions that may be amenable to therapeutic interventions
    corecore