14 research outputs found
Upper respiratory Streptococcus pneumoniae colonization among working-age adults with prevalent exposure to overcrowding.
Most pneumococcal disease occurs among infants and older adults and is thought to be driven by the transmission of Streptococcus pneumoniae from young children to these vulnerable age groups. However, pneumococcal disease outbreaks also affect non-elderly adults living or working in congregate, close-contact settings. Little is known about pneumococcal carriage in such populations. From July to November 2020, we collected saliva from low-income adult farmworkers in Monterey County, California, and tested for pneumococcal carriage following culture enrichment via quantitative PCR assays targeting the pneumococcal lytA and piaB genes. Participants were considered to carry pneumococci if lytA and piaB cycle threshold values were both below 40. Among 1,283 participants enrolled in our study, 117 (9.1%) carried pneumococci. Carriers tended more often than non-carriers to be exposed to children aged <5 years [odds ratio (OR) = 1.45 (0.95-2.20)] and overcrowding [OR = 1.48 (0.96-2.30) and 2.84 (1.20-6.73), respectively, for participants in households with >2-4 and >4 persons per bedroom vs ≤2 persons per bedroom]. Household overcrowding remained associated with increased risk of carriage among participants not exposed to children aged <5 years [OR = 2.05 (1.18-3.59) for participants living in households with >2 vs ≤2 persons per bedroom]. Exposure to children aged <5 years and overcrowding were each associated with increased pneumococcal density among carriers [piaB cT difference of 2.04 (0.36-3.73) and 2.44 (0.80-4.11), respectively]. While exposure to young children was a predictor of pneumococcal carriage, associations of overcrowding with increased prevalence and density of carriage in households without young children suggest that transmission also occurs among adults in close-contact settings.IMPORTANCEAlthough infants and older adults are the groups most commonly affected by pneumococcal disease, outbreaks are known to occur among healthy, working-age populations exposed to overcrowding, including miners, shipyard workers, military recruits, and prisoners. Carriage of Streptococcus pneumoniae is the precursor to pneumococcal disease, and its relation to overcrowding in adult populations is poorly understood. We used molecular methods to characterize pneumococcal carriage in culture-enriched saliva samples from low-income adult farmworkers in Monterey County, CA. While exposure to children in the household was an important risk factor for pneumococcal carriage, living in an overcrowded household without young children was an independent predictor of carriage as well. Moreover, participants exposed to children or overcrowding carried pneumococci at higher density than those without such exposures, suggesting recent transmission. Our findings suggest that, in addition to transmission from young children, pneumococcal transmission may occur independently among adults in overcrowded settings
The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation
Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAFMEK- ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules such as glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 likely exists. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone for superoxide dismutase (CCS) selectively bound to and facilitated Cu transfer to MEK1. Mutants of CCS that disrupt Cu(I) acquisition and exchange or a CCS small-molecule inhibitor were used and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and supports the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS
Recommended from our members
The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial
Background: The apolipoprotein E (APOE) risk allele (ɛ4) is associated with higher total cholesterol (TC), amplified response to saturated fatty acid (SFA) reduction, and increased cardiovascular disease. Although knowledge of gene risk may enhance dietary change, it is unclear whether ɛ4 carriers would benefit from gene-based personalized nutrition (PN).
Objectives: The aims of this study were to 1) investigate interactions between APOE genotype and habitual dietary fat intake and modulations of fat intake on metabolic outcomes; 2) determine whether gene-based PN results in greater dietary change than do standard dietary advice (level 0) and nongene-based PN (levels 1–2); and 3) assess the impact of knowledge of APOE risk (risk: E4+, nonrisk: E4−) on dietary change after gene-based PN (level 3).
Design: Individuals (n = 1466) recruited into the Food4Me pan-European PN dietary intervention study were randomly assigned to 4 treatment arms and genotyped for APOE (rs429358 and rs7412). Diet and dried blood spot TC and ω-3 (n–3) index were determined at baseline and after a 6-mo intervention. Data were analyzed with the use of adjusted general linear models.
Results: Significantly higher TC concentrations were observed in E4+ participants than in E4− (P < 0.05). Although there were no significant differences in APOE response to gene-based PN (E4+ compared with E4−), both groups had a greater reduction in SFA (percentage of total energy) intake than at level 0 (mean ± SD: E4+, −0.72% ± 0.35% compared with −1.95% ± 0.45%, P = 0.035; E4−, −0.31% ± 0.20% compared with −1.68% ± 0.35%, P = 0.029). Gene-based PN was associated with a smaller reduction in SFA intake than in nongene-based PN (level 2) for E4− participants (−1.68% ± 0.35% compared with −2.56% ± 0.27%, P = 0.025).
Conclusions: The APOE ɛ4 allele was associated with higher TC. Although gene-based PN targeted to APOE was more effective in reducing SFA intake than standard dietary advice, there was no difference between APOE “risk” and “nonrisk” groups. Furthermore, disclosure of APOE nonrisk may have weakened dietary response to PN
The legal determinants of health: harnessing the power of law for global health and sustainable development.
Law affects global health in multiple ways, by structuring, perpetuating, and mediating the social determinants of health.
2 Although law has been central to major public health achievements in the past, its capacity to advance global health with justice remains substantially underutilised, particularly among professionals in the fields of health and science.
3 The right to health, a legally binding norm, provides a foundation for advancing global health with justice and should underpin health-related legal reforms.
4 Every human being has a right to affordable, high quality health services. By embedding equity and accountability in all health systems, the law and the rule of law can achieve health coverage that is truly universal—delivering the Sustainable Development Goals’ promise to leave no one behind.
5 Although the ability to enforce compliance with international legal obligations is generally limited, and largely dependent on power dynamics and political will, creative mechanisms can foster compliance and help establish impetus for action.
6 Law can address the pressing health concerns of the 21st century, across diverse areas. From tobacco control, non-communicable diseases, and road safety, to health emergencies, law can implement fair, evidence-based interventions to save lives. The global health community should champion evidence-based legal interventions and build the research case for legal action.
7 Laws that stigmatise or discriminate against marginalised populations are especially harmful and exacerbate health disparities. The global health community must oppose laws that undermine the right to health and to equity.
8 To realise the full potential of law to advance global health with justice, the global health community should build legal capacity and establish a sustained dialogue with legislators, regulators, judges, civil society, and researchers
Recommended from our members
Incorporation of Ni2+, Co2+, and Selenocysteine into the Auxiliary Fe‑S Cluster of the Radical SAM Enzyme HydG
The radical SAM enzyme HydG generates CO- and CN--containing Fe complexes that are involved in the bioassembly of the [FeFe] hydrogenase active cofactor, the H-cluster. HydG contains a unique 5Fe-4S cluster in which the fifth "dangler" Fe and the coordinating cysteine molecule have both been shown to be essential for its function. Here, we demonstrate that this dangler Fe can be replaced with Ni2+ or Co2+ and that the cysteine can be replaced with selenocysteine. The resulting HydG variants were characterized by electron paramagnetic resonance and X-ray absorption spectroscopy, as well as subjected to a Tyr cleavage assay. Both Ni2+ and Co2+ are shown to be exchange-coupled to the 4Fe-4S cluster, and selenocysteine substitution does not alter the electronic structure significantly. XAS data provide details of the coordination environments near the Ni, Co, and Se atoms and support a close interaction of the dangler metal with the FeS cluster via an asymmetric SeCys bridge. Finally, while we were unable to observe the formation of novel organometallic species for the Ni2+ and Co2+ variants, the selenocysteine variant retains the activity of wild type HydG in forming [Fe(CO)x(CN)y] species. Our results provide more insights into the unique auxiliary cluster in HydG and expand the scope of artificially generated Fe-S clusters with heteroatoms
Recommended from our members
The binuclear cluster of [FeFe] hydrogenase is formed with sulfur donated by cysteine of an [Fe(Cys)(CO)2(CN)] organometallic precursor
The enzyme [FeFe]-hydrogenase (HydA1) contains a unique 6-iron cofactor, the H-cluster, that has unusual ligands to an Fe-Fe binuclear subcluster: CN-, CO, and an azadithiolate (adt) ligand that provides 2 S bridges between the 2 Fe atoms. In cells, the H-cluster is assembled by a collection of 3 maturases: HydE and HydF, whose roles aren't fully understood, and HydG, which has been shown to construct a [Fe(Cys)(CO)2(CN)] organometallic precursor to the binuclear cluster. Here, we report the in vitro assembly of the H-cluster in the absence of HydG, which is functionally replaced by adding a synthetic [Fe(Cys)(CO)2(CN)] carrier in the maturation reaction. The synthetic carrier and the HydG-generated analog exhibit similar infrared spectra. The carrier allows HydG-free maturation to HydA1, whose activity matches that of the native enzyme. Maturation with 13CN-containing carrier affords 13CN-labeled enzyme as verified by electron paramagnetic resonance (EPR)/electron nuclear double-resonance spectra. This synthetic surrogate approach complements existing biochemical strategies and greatly facilitates the understanding of pathways involved in the assembly of the H-cluster. As an immediate demonstration, we clarify that Cys is not the source of the carbon and nitrogen atoms in the adt ligand using pulse EPR to target the magnetic couplings introduced via a 13C3,15N-Cys-labeled synthetic carrier. Parallel mass-spectrometry experiments show that the Cys backbone is converted to pyruvate, consistent with a cysteine role in donating S in forming the adt bridge. This mechanistic scenario is confirmed via maturation with a seleno-Cys carrier to form HydA1-Se, where the incorporation of Se was characterized by extended X-ray absorption fine structure spectroscopy