3,167 research outputs found
Areas of natural occurrence of melipona scutellaris Latreille, 1811(Hymenoptera: Apidae) in the state of Bahia, Brazil.
The bee Melipona scutellaris is considered the reared meliponine species with the largest distribution in the North and Northeast regions of Brazil, with records from the state of Rio Grande do Norte down to the state of Bahia. Considering the importance of this species in the generation of income for family agriculture and in the preservation of areas with natural vegetation, this study aimed at providing knowledge on the distribution of natural colonies of M. scutellaris in the state of Bahia. Literature information, interviews with stinglessbee beekeepers, and expeditions were conducted to confirm the natural occurrence of the species. A total of 102 municipalities showed records for M. scutellaris, whose occurrence was observed in areas ranging from sea level up to 1,200-meter height. The occurrence of this species in the state of Bahia is considered to be restricted to municipalities on the coastal area and the Chapada Diamantina with its rainforests. Geographic coordinates, elevation, climate and vegetation data were obtained, which allowed a map to be prepared for the area of occurrence in order to support conservation and management policies for the species
IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection
IL-21 is produced predominantly by activated CD4(+) T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (gamma(c)) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8(+) T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4(+) and CD8(+) T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R(-/-) mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R(-/-) T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis.This work was supported by National Institutes of Health Grants R21 AI100766, R01 AI106725, and P01 AI073748
Infrared composition of the Large Magellanic Cloud
The evolution of galaxies and the history of star formation in the Universe
are among the most important topics in today's astrophysics. Especially, the
role of small, irregular galaxies in the star-formation history of the Universe
is not yet clear. Using the data from the AKARI IRC survey of the Large
Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the
mid- and near-infrared, we have constructed a multiwavelength catalog
containing data from a cross-correlation with a number of other databases at
different wavelengths. We present the separation of different classes of stars
in the LMC in color-color, and color-magnitude, diagrams, and analyze their
contribution to the total LMC flux, related to point sources at different
infrared wavelengths
Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs
Controlling Cherenkov angles with resonance transition radiation
Cherenkov radiation provides a valuable way to identify high energy particles
in a wide momentum range, through the relation between the particle velocity
and the Cherenkov angle. However, since the Cherenkov angle depends only on
material's permittivity, the material unavoidably sets a fundamental limit to
the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring
Imaging Cherenkov detectors must employ materials transparent to the frequency
of interest as well as possessing permittivities close to unity to identify
particles in the multi GeV range, and thus are often limited to large gas
chambers. It would be extremely important albeit challenging to lift this
fundamental limit and control Cherenkov angles as preferred. Here we propose a
new mechanism that uses constructive interference of resonance transition
radiation from photonic crystals to generate both forward and backward
Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible
way with high sensitivity to any desired range of velocities. Photonic crystals
thus overcome the severe material limit for Cherenkov detectors, enabling the
use of transparent materials with arbitrary values of permittivity, and provide
a promising option suited for identification of particles at high energy with
enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary
information with 18 pages and 5 figures, appended at the end of the file with
the manuscript. Source files in Word format converted to PDF. Submitted to
Nature Physic
Human and murine clonal CD8+ T cell expansions arise during tuberculosis because of TCR selection
The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-? production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.This work was supported by the Portuguese Foundation for Science and Technology individual fellowship (CNA) www.fct.pt, a National Institutes of Health Grant R01 AI106725 (SMB) www.nih.gov, and a Center for AIDS Research Grant P30 AI 060354 (SMB) www.nih.gov. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
- …
