28,690 research outputs found

    An unified cosmological evolution driven by a mass dimension one fermionic field

    Full text link
    An unified cosmological model for an Universe filled with a mass dimension one (MDO) fermionic field plus the standard matter fields is considered. After a primordial quantum fluctuation the field slowly rolls down to the bottom of a symmetry breaking potential, driving the Universe to an inflationary regime that increases the scale factor for about 71 e-folds. After the end of inflation, the field starts to oscillate and can transfer its energy to the standard model particles through a reheating mechanism. Such a process is briefly discussed in terms of the admissible couplings of the MDO field with the electromagnetic and Higgs fields. We show that even if the field loses all its kinetic energy during reheating, it can evolve as dark matter due a gravitational coupling (of spinorial origin) with baryonic matter. Since the field acquires a constant value at the bottom of the potential, a non-null, although tiny, mass term acts as a dark energy component nowadays. Therefore, we conclude that MDO fermionic field is a good candidate to drive the whole evolution of the Universe, in such a way that the inflationary field, dark matter and dark energy are described by different manifestations of a single field.Comment: 22 pages, 5 figure

    A low-mass stellar companion of the planet host star HD75289

    Full text link
    We report on the detection of a new low-mass stellar companion of HD75289, a G0V star that harbors one known radial-velocity planet (Udry et al. 2000). Comparing an image of 2MASS with an image we obtained with SofI at the ESO 3.58m NTT three years later, we detected a co-moving companion located 21.465+-0.023arcsecs (621+-10AU at 29pc) east of HD75289. A second SofI image taken 10 months later confirmed the common proper motion of HD75289B with its host star. The infrared spectrum and colors of the companion are consistent with an M2 to M5 main-sequence star at the distance of HD75289. No further (sub)stellar companion down to H = 19mag could be detected. With the SofI detection limit we can rule out additional stellar companions beyond 140AU and substellar companions with masses m > 0.050Msun from 400AU up to 2000AU.Comment: accepted in A&

    Dynamics and Constraints of the Massive Gravitons Dark Matter Flat Cosmologies

    Full text link
    We discuss the dynamics of the universe within the framework of Massive Graviton Dark Matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the Cosmic Microwave Background (CMB) shift parameter and the Baryonic Acoustic Oscillations (BAOs) as traced by the Sloan Digital Sky Survey (SDSS) red luminous galaxies. The linear evolution of small density fluctuations is also analysed in detail. It is found that the growth factor of the MGCDM model is slightly different (14\sim1-4%) from the one provided by the conventional flat Λ\LambdaCDM cosmology. The growth rate of clustering predicted by MGCDM and Λ\LambdaCDM models are confronted to the observations and the corresponding best fit values of the growth index (γ\gamma) are also determined. By using the expectations of realistic future X-ray and Sunyaev-Zeldovich cluster surveys we derive the dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Λ\LambdaCDM models provide a halo redshift distribution departing significantly from the ones predicted by other DE models. These results suggest that the MGCDM model can observationally be distinguished from Λ\LambdaCDM and also from a large number of dark energy models recently proposed in the literature.Comment: Accepted for publication in Physical Review D (12 pages, 4 figures

    Structural and optical properties of Zn0.9 Mn0.1 O/ZnO core-shell nanowires designed by pulsed laser deposition

    Get PDF
    Partilhar documento na coleção da comunidade Laboratório Associado I3NCore-shell ZnO/ZnMnO nanowires on a-Al2O3 and GaN (buffer layer)/Si (111) substrates were fabricated by pulsed laser deposition using a Au catalyst. Two ZnO targets with a Mn content of 10% were sintered at 1150 and 550 °C in order to achieve the domination in them of paramagnetic MnO2 and ferromagnetic Mn2O3 phases, respectively. Cluster mechanism of laser ablation as a source of possible incorporation of secondary phases to the wire shell is discussed. Raman spectroscopy under excitation by an Ar+ laser revealed a broad peak related to the Mn-induced disorder and a redshift in the A1-LO phonon. Resonant Raman measurements revealed an increase in the multiphonon scattering caused by disorder in ZnO upon doping by Mn. Besides the UV emission, a vibronic green emission band assisted by a ∼ 71 meV LO phonon is also observed in the photoluminescence spectra. Core-shell structures with smooth shells show a high exciton to green band intensity ratio ( ∼ 10) even at room temperature. © 2009 American Institute of PhysicsSANDiE Network of Excellence of the EUFCT-PTDC/FIS/72843/200

    Orion revisited. II. The foreground population to Orion A

    Full text link
    Following the recent discovery of a large population of young stars in front of the Orion Nebula, we carried out an observational campaign with the DECam wide-field camera covering ~10~deg^2 centered on NGC 1980 to confirm, probe the extent of, and characterize this foreground population of pre-main-sequence stars. We confirm the presence of a large foreground population towards the Orion A cloud. This population contains several distinct subgroups, including NGC1980 and NGC1981, and stretches across several degrees in front of the Orion A cloud. By comparing the location of their sequence in various color-magnitude diagrams with other clusters, we found a distance and an age of 380pc and 5~10Myr, in good agreement with previous estimates. Our final sample includes 2123 candidate members and is complete from below the hydrogen-burning limit to about 0.3Msun, where the data start to be limited by saturation. Extrapolating the mass function to the high masses, we estimate a total number of ~2600 members in the surveyed region. We confirm the presence of a rich, contiguous, and essentially coeval population of about 2600 foreground stars in front of the Orion A cloud, loosely clustered around NGC1980, NGC1981, and a new group in the foreground of the OMC-2/3. For the area of the cloud surveyed, this result implies that there are more young stars in the foreground population than young stars inside the cloud. Assuming a normal initial mass function, we estimate that between one to a few supernovae must have exploded in the foreground population in the past few million years, close to the surface of Orion A, which might be responsible, together with stellar winds, for the structure and star formation activity in these clouds. This long-overlooked foreground stellar population is of great significance, calling for a revision of the star formation history in this region of the Galaxy.Comment: Accepted for publication in A&

    On the relation between mass of pion, fundamental physical constants and cosmological parameters

    Full text link
    In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational "constant", as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the "content" of the quantum vacuum
    corecore