25,861 research outputs found

    An unified cosmological evolution driven by a mass dimension one fermionic field

    Full text link
    An unified cosmological model for an Universe filled with a mass dimension one (MDO) fermionic field plus the standard matter fields is considered. After a primordial quantum fluctuation the field slowly rolls down to the bottom of a symmetry breaking potential, driving the Universe to an inflationary regime that increases the scale factor for about 71 e-folds. After the end of inflation, the field starts to oscillate and can transfer its energy to the standard model particles through a reheating mechanism. Such a process is briefly discussed in terms of the admissible couplings of the MDO field with the electromagnetic and Higgs fields. We show that even if the field loses all its kinetic energy during reheating, it can evolve as dark matter due a gravitational coupling (of spinorial origin) with baryonic matter. Since the field acquires a constant value at the bottom of the potential, a non-null, although tiny, mass term acts as a dark energy component nowadays. Therefore, we conclude that MDO fermionic field is a good candidate to drive the whole evolution of the Universe, in such a way that the inflationary field, dark matter and dark energy are described by different manifestations of a single field.Comment: 22 pages, 5 figure

    Low frequency measurements of synchrotron absorbing HII regions and modeling of observed synchrotron emissivity

    Get PDF
    Cosmic rays (CRs) and magnetic fields are dynamically important components in the Galaxy, and their energy densities are comparable to that of the turbulent interstellar gas. The interaction of CRs and Galactic magnetic fields produces synchrotron radiation clearly visible in the radio regime. Detailed measurements of synchrotron radiation averaged over the line-of-sight (LOS), so-called synchrotron emissivities, can be used as a tracer of the CR density and Galactic magnetic field (GMF) strength. Our aim is to model the synchrotron emissivity in the Milky Way using a 3 dimensional dataset instead of LOS-integrated intensity maps on the sky. Using absorbed HII regions we can measure the synchrotron emissivity over a part of the LOS through the Galaxy, changing from a 2 dimensional to a 3 dimensional view. Performing these measurements on a large scale is one of the new applications of the window opened by current low frequency arrays. Using various simple axisymmetric emissivity models and a number of GMF-based emissivity models we can simulate the synchrotron emissivities and compare them to the observed values in the catalog. We present a catalog of low-frequency absorption measurements of HII regions, their distances and electron temperatures, compiled from literature. These data show that the axisymmetric emissivity models are not complex enough, but the GMF-based emissivity models deliver a reasonable fit. These models suggest that the fit can be improved by either an enhanced synchrotron emissivity in the outer reaches of the Milky Way, or an emissivity drop near the Galactic center. State-of-the-art GMF models plus a constant CR density model cannot explain low-frequency absorption measurements, but the fits improved with slight (ad-hoc) adaptations. It is clear that more detailed models are needed, but the current results are very promising.Comment: 14 pages, 9 figures, accepted for publication in A&

    A low-mass stellar companion of the planet host star HD75289

    Full text link
    We report on the detection of a new low-mass stellar companion of HD75289, a G0V star that harbors one known radial-velocity planet (Udry et al. 2000). Comparing an image of 2MASS with an image we obtained with SofI at the ESO 3.58m NTT three years later, we detected a co-moving companion located 21.465+-0.023arcsecs (621+-10AU at 29pc) east of HD75289. A second SofI image taken 10 months later confirmed the common proper motion of HD75289B with its host star. The infrared spectrum and colors of the companion are consistent with an M2 to M5 main-sequence star at the distance of HD75289. No further (sub)stellar companion down to H = 19mag could be detected. With the SofI detection limit we can rule out additional stellar companions beyond 140AU and substellar companions with masses m > 0.050Msun from 400AU up to 2000AU.Comment: accepted in A&

    Structural and optical properties of Zn0.9 Mn0.1 O/ZnO core-shell nanowires designed by pulsed laser deposition

    Get PDF
    Partilhar documento na coleção da comunidade Laboratório Associado I3NCore-shell ZnO/ZnMnO nanowires on a-Al2O3 and GaN (buffer layer)/Si (111) substrates were fabricated by pulsed laser deposition using a Au catalyst. Two ZnO targets with a Mn content of 10% were sintered at 1150 and 550 °C in order to achieve the domination in them of paramagnetic MnO2 and ferromagnetic Mn2O3 phases, respectively. Cluster mechanism of laser ablation as a source of possible incorporation of secondary phases to the wire shell is discussed. Raman spectroscopy under excitation by an Ar+ laser revealed a broad peak related to the Mn-induced disorder and a redshift in the A1-LO phonon. Resonant Raman measurements revealed an increase in the multiphonon scattering caused by disorder in ZnO upon doping by Mn. Besides the UV emission, a vibronic green emission band assisted by a ∼ 71 meV LO phonon is also observed in the photoluminescence spectra. Core-shell structures with smooth shells show a high exciton to green band intensity ratio ( ∼ 10) even at room temperature. © 2009 American Institute of PhysicsSANDiE Network of Excellence of the EUFCT-PTDC/FIS/72843/200
    • …
    corecore