43 research outputs found

    Preantral follicle population and distribution in the horse ovary.

    Get PDF
    Characterization of the ovarian preantral follicle population is a necessary step to improve understanding of folliculogenesis and ovarian physiology. Therefore, in the present study, the preantral follicle population in the equine ovary in young and old mares was investigated according to follicular morphology, follicular class, distance from the geometric center using ovarian maps, and follicular density within ovarian portions (lateral vs intermediary) and regions (dorsal vs ventral). Ovaries were collected from an abattoir and histologically processed for evaluation, and the follicle population was calculated. Overall, in the current detailed study, a higher preantral follicle population per mare ovary (mean: 82,206 ± 50,022; range: 1477 to 773,091) than originally reported was identified. Additionally, a mare age effect was observed in the follicle population (young: 152,664 vs old: 11,750) and the spatial distribution of morphologically normal and abnormal follicles and the density and population of follicular classes. These results demonstrate that, in addition to the preantral follicle population in the mare ovary being comparable to that of other species, the location and spatial distribution of these follicles is dynamic and varies depending on mare age and follicle status (i.e. morphology and developmental stage). The characterization of the distribution and population of preantral follicles in the mare ovary provided by this study can potentially aid in improving reproductive studies and assisted reproductive techniques and may expand the understanding of mechanisms involving ovarian plasticity and follicular migration. LAY SUMMARY: Knowledge of the distribution and population of immature eggs within follicles (preantral follicles) in the ovaries of mares can improve approaches to assisted reproductive techniques and fertility preservation. As the existing research on horse preantral follicle population was focused solely on large follicles, the present study provides an updated investigation of small and large preantral follicles in the mare, showing that the population is similar to those in other species. This study also shows that the way these follicles are distributed in the ovary varies depending on age and follicle characteristics. Results from this study may help to highlight which areas of the mare ovary should be looked at to find samples of good-quality follicles

    The Mare Model to Study the Effects of Ovarian Dynamics on Preantral Follicle Features.

    Get PDF
    Ovarian tissue collected by biopsy procedures allows the performance of many studies with clinical applications in the field of female fertility preservation. The aim of the present study was to investigate the influence of reproductive phase (anestrous vs. diestrous) and ovarian structures (antral follicles and corpus luteum) on the quality, class distribution, number, and density of preantral follicles, and stromal cell density. Ovarian fragments were harvested by biopsy pick-up procedures from mares and submitted to histological analysis. The mean preantral follicle and ovarian stromal cell densities were greater in the diestrous phase and a positive correlation of stromal cell density with the number and density of preantral follicles was observed. The mean area (mm2) of ovarian structures increased in the diestrous phase and had positive correlations with number of preantral follicles, follicle density, and stromal cell density. Biopsy fragments collected from ovaries containing an active corpus luteum had a higher follicle density, stromal cell density, and proportion of normal preantral follicles. In conclusion, our results showed: (1) the diestrous phase influenced positively the preantral follicle quality, class distribution, and follicle and stromal cell densities; (2) the area of ovarian structures was positively correlated with the follicle and stromal cell densities; and (3) the presence of an active corpus luteum had a positive effect on the quality of preantral follicles, and follicle and stromal densities. Therefore, herein we demonstrate that the presence of key ovarian structures favors the harvest of ovarian fragments containing an appropriate number of healthy preantral follicles

    Characterization of preantral follicle clustering and neighborhood patterns in the equine ovary.

    Get PDF
    Understanding the transition from quiescent primordial follicles to activated primary follicles is vital for characterizing ovarian folliculogenesis and improving assisted reproductive techniques. To date, no study has investigated preantral follicle crowding in the ovaries of livestock or characterized these crowds according to follicular morphology and ovarian location (portions and regions) in any species. Therefore, the present study aimed to assess the crowding (clustering and neighborhood) patterns of preantral follicles in the equine ovary according to mare age, follicular morphology and developmental stage, and spatial location in the ovary. Ovaries from mares (n = 8) were collected at an abattoir and processed histologically for evaluation of follicular clustering using the Morisita Index and follicular neighborhoods in ovarian sections. Young mares were found to have a large number of preantral follicles with neighbors (n = 2,626), while old mares had a small number (n = 305). Moreover, young mares had a higher number of neighbors per follicle (2.6 ± 0.0) than old mares (1.2 ± 0.1). Follicle clustering was shown to be present in all areas of the ovary, with young mares having more clustering overall than old mares and a tendency for higher clustering in the ventral region when ages were combined. Furthermore, follicles with neighbors were more likely to be morphologically normal (76.5 ± 6.5%) than abnormal (23.5 ± 6.5%). Additionally, morphologically normal activated follicles had increased odds of having neighbors than normal resting follicles, and these normal activated follicles had more neighbors (2.6 ± 0.1) than normal resting follicles (2.3 ± 0.1 neighbors). In the present study, it was demonstrated that preantral follicles do crowd in the mare ovary and that clustering/neighborhood patterns are dynamic and differ depending on mare age, follicular morphology, and follicular developmental stage

    Heterotopic autotransplantation of ovarian tissue in a large animal model: Effects of cooling and VEGF.

    Get PDF
    Heterotopic and orthotopic ovarian tissue autotransplantation techniques, currently used in humans, will become promising alternative methods for fertility preservation in domestic and wild animals. Thus, this study describes for the first time the efficiency of a heterotopic ovarian tissue autotransplantation technique in a large livestock species (i.e., horses) after ovarian fragments were exposed or not to a cooling process (4°C/24 h) and/or VEGF before grafting. Ovarian fragments were collected in vivo via an ultrasound-guided biopsy pick-up method and surgically autografted in a subcutaneous site in both sides of the neck in each mare. The blood flow perfusion at the transplantation site was monitored at days 2, 4, 6, and 7 post-grafting using color-Doppler ultrasonography. Ovarian grafts were recovered 7 days post-transplantation and subjected to histological analyses. The exposure of the ovarian fragments to VEGF before grafting was not beneficial to the quality of the tissue; however, the cooling process of the fragments reduced the acute hyperemia post-grafting. Cooled grafts compared with non-cooled grafts contained similar values for normal and developing preantral follicles, vessel density, and stromal cell apoptosis; lower collagen type III fibers and follicular density; and higher stromal cell density, AgNOR, and collagen type I fibers. In conclusion, VEGF exposure before autotransplantation did not improve the quality of grafted tissues. However, cooling ovarian tissue for at least 24 h before grafting can be beneficial because satisfactory rates of follicle survival and development, stromal cell survival and proliferation, as well as vessel density, were obtained

    Spatial distribution of preantral follicles in the equine ovary - Fig 7

    No full text
    <p><b>Polar coordinate plots of representative mares showing the spatial distribution of primordial and developing follicles (combined ovarian portions) on equine ovarian cortex according to age [(A,B) old mare; (C,D) young mare] and side ovary [(A,C) left ovaries; (B,D) right ovaries].</b> Preantral follicles were represented by filled gray and open red circles. The spatial distribution was determined by its angulation (0º˗360º) and distance (mm) in relation to ovarian geometric center. The drawn ovaries (yellow) represent the original dimensions (length and height) from each animal.</p

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Spatial distribution of preantral follicles in the equine ovary

    No full text
    <div><p>Comprehensive studies on spatial distribution of preantral follicles in the ovary are scarce. Considering that preantral follicles represent the main ovarian reserve, harvesting of these follicles is crucial for the development/use of assisted reproductive techniques. Therefore, knowledge on follicle spatial distribution can be helpful for targeting areas with richer number of preantral follicles through biopsy procedures. The aim of this study was to assess the distribution and localization of equine preantral follicles according to: (i) age, (ii) ovarian portion (lateral and intermediary) and region (dorsal and ventral), (iii) distance from the geometric center, and (iv) follicular class. Ovaries from young and old mares (n = 8) were harvested in a slaughterhouse and submitted to histological processing for further evaluation. For data analyses, a novel methodology was developed according to the geometric center of each histological section for a precise determination of preantral follicle distribution. Results indicated that (i) equine preantral follicles are clustered and located near to the ovarian geometric center, and that aging induced their dispersion through the ovarian cortex; (ii) the distance from the geometric center was shorter for developing follicles than primordial; and (iii) secondary follicles were more distant from the geometric center but closer to the ovulation fossa. In conclusion, the spatial distribution of preantral follicles was successfully determined in the equine ovary and was affected by age, region, and portion.</p></div

    Age effect on frequency distribution of equine preantral follicles according to the geometric center in different ovarian portions (lateral and intermediary).

    No full text
    <p>Age effect on frequency distribution of equine preantral follicles according to the geometric center in different ovarian portions (lateral and intermediary).</p

    Illustration of experimental procedures performed to assess the preantral follicle spatial distribution in the equine ovary.

    No full text
    <p>The ovaries were divided into (A) three portions (lateral, n = 2; intermediary, n = 1), followed by (B) histological processing. Thereafter, the main steps to guide the microscopy evaluation were performed: (C) squared sheet developed with columns and rows represented by letters and numbers, respectively; (D) microscopy slides scanned jointly with squared sheet by a photo editing program; (E) geometric center determination for each histological section; (F) definition of dorsal and ventral ovarian regions; and (G) analysis of preantral follicle distribution using the squared sheet at the moment of microscope evaluation.</p
    corecore