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RESEARCH ARTICLE
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Ovarian Dynamics on Preantral Follicle
Features
Kele A. Alves1,2, Benner G. Alves1, Gustavo D. A. Gastal1, Saulo G. S. de Tarso1, Melba
O. Gastal1, José R. Figueiredo3, Maria L. Gambarini2, Eduardo L. Gastal1*

1 Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, lllinois, United
States of America, 2 Center for Studies and Research in Animal Reproductive Biology, College of Veterinary
and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil, 3 Laboratory of Manipulation of
Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará,
Fortaleza, CE, Brazil

* egastal@siu.edu

Abstract
Ovarian tissue collected by biopsy procedures allows the performance of many studies with

clinical applications in the field of female fertility preservation. The aim of the present study was

to investigate the influence of reproductive phase (anestrous vs. diestrous) and ovarian struc-

tures (antral follicles and corpus luteum) on the quality, class distribution, number, and density

of preantral follicles, and stromal cell density. Ovarian fragments were harvested by biopsy

pick-up procedures frommares and submitted to histological analysis. Themean preantral folli-

cle and ovarian stromal cell densities were greater in the diestrous phase and a positive corre-

lation of stromal cell density with the number and density of preantral follicles was observed.

Themean area (mm2) of ovarian structures increased in the diestrous phase and had positive

correlations with number of preantral follicles, follicle density, and stromal cell density. Biopsy

fragments collected from ovaries containing an active corpus luteum had a higher follicle den-

sity, stromal cell density, and proportion of normal preantral follicles. In conclusion, our results

showed: (1) the diestrous phase influenced positively the preantral follicle quality, class distri-

bution, and follicle and stromal cell densities; (2) the area of ovarian structures was positively

correlated with the follicle and stromal cell densities; and (3) the presence of an active corpus

luteum had a positive effect on the quality of preantral follicles, and follicle and stromal densi-

ties. Therefore, herein we demonstrate that the presence of key ovarian structures favors the

harvest of ovarian fragments containing an appropriate number of healthy preantral follicles.

Introduction
The mare has been advocated by many researchers as an appropriate comparative animal
model to study antral follicular dynamics in women [1–9] due to some similarities in reproduc-
tive events (e.g., follicular waves, hormonal concentration changes, age-related decline in
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fertility, acyclic conditions, and anovulatory dysfunctions such as cysts or luteinized unrup-
tured follicles/hemorrhagic anovulatory follicles). Women and mares are monovular species
and although the seasonality does not occur in women, this characteristic in an animal model
allows the evaluation of which internal ovarian factors may be operating when acyclic patterns
are occurring [3]. More recently, the mare has also been suggested as a model for studies
related to preantral follicles [10–13]. Therefore, the search for an appropriate animal model for
comparative studies of preantral follicle population, density, and distribution has been a major
focus of ovarian translational studies [14].

The preantral follicle population represents the finite and available reserve of gametes that
can be recruited during the reproductive lifespan. In order to explore such potential, it is neces-
sary to understand some anatomical-physiological aspects related to the ovary. The follicular
heterogeneity observed in ovarian fragments of different species (mares: [10]; women: [15];
cows: [16]; and ewes: [17]) limits the harvesting and more widespread use of preantral follicles
in assisted reproductive technologies (ARTs), such as in vitro follicle culture, and ovarian cryo-
preservation and transplant. The ovarian parenchyma contains a considerable area of stroma
which suffers profound structural changes during the different reproductive phases due to the
dynamics of antral follicles and corpus luteum. Furthermore, stromal cell density is an impor-
tant indicator of tissue integrity, plays a role in follicle development [18–20], and is considered
an important parameter for maintaining the functionality of preantral follicles. Previous stud-
ies reported that ovarian structures produce hormones and growth factors that can stimulate
the development and viability of preantral follicles [21–25]. In addition, cellular mechano-
chemical processes and changes in the extracellular matrix govern tissue morphogenesis during
different reproductive phases [26]. Therefore, studies evaluating the influence of ovarian
parenchymal structures such as antral follicles (tertiary and preovulatory follicles) and corpus
luteum on the number, density, and quality of preantral follicles are needed.

Ovarian biopsy has been an important tool used to harvest preantral follicles for use in clini-
cal and research settings, allowing female fertility preservation in several species (mares: [11,
12]; women: [15, 27, 28, 29]; and cows: [16, 30]). This safe method ensures the collection of
preantral follicles without jeopardizing the individual’s reproductive life [10, 31]. To the best of
our knowledge, there are no studies in horses reporting established guidelines to identify the
most suitable reproductive phase (e.g., diestrous vs. anestrous) to perform ovarian biopsy pro-
cedures for harvesting a suitable number of healthy preantral follicles associated with higher
follicular and stromal cell densities.

The aim of this study was to assess the influence of reproductive phases (anestrous and dies-
trous) and ovarian structures (antral follicles and corpus luteum) on the: (1) quality, class dis-
tribution, number, and density of preantral follicles, and (2) stromal cell density in ovarian
fragments harvested by biopsy procedure.

Materials and Methods

Animals
All experimental procedures were performed according to the United States Government Princi-
ples for the Utilization and Care of Vertebrate Animals Used in Testing, Research and Training.
The research protocol (#11–007) was approved by the Institutional Animal Care and Use Com-
mittee of Southern Illinois University. The study was carried out during the winter (December to
March) and spring seasons (April to June) in the northern hemisphere. Light horse mares
(n = 10) that weighed between 400 and 600 Kg and were 5 to 11 years old were used. No hor-
monal treatments were administered during the experimental period. Mares were kept on pas-
ture and orchard grass/alfalfa mixed hay, supplemented with balanced grain ration and minerals.
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Area of ovarian structures
The ovaries and uterus of each mare were scanned every other day for two months during the
winter and spring seasons using a transrectal ultrasound scanner (Aloka SSD-900, Aloka Co.,
LTD., Wallingford, CT, USA) equipped with a 5 to 10 MHz linear array transducer (Aloka
UST-5821-7.5). At the moment of the biopsy procedure, the ovarian structures were recorded
as small follicles (6 to 26 mm of diameter), preovulatory follicles (�36 mm), and corpus luteum
(�30 mm, days 4 to 12 of estrous cycle). Therefore, the following classifications were gener-
ated: a) small follicles (ovary with only small follicles); b) corpus luteum (ovary with small folli-
cles and a corpus luteum); and c) preovulatory follicle (ovary with small follicles and a
preovulatory follicle). The height and width of the ovarian structures were recorded at the max-
imal length using the caliper of the ultrasound scanner software and the average of these mea-
sures was used to determine each structure’s diameter [32]. Thereafter, the area (mm2) of each
ovarian structure was calculated by the following formula: Area = π × (D/2)2; where: π = 3.14;
D = diameter (mm).

Ovarian tissue collection
Biopsy fragments (n = 3 to 4) were collected from each ovary (left and right) separately via the
biopsy pick-up technique [10]. Briefly, before each biopsy procedure, analgesia (flunixin
meglumine; Flunixiject, 1.1 mg/kg iv; Butler Schein Animal Health, Dublin, OH, USA), rectal
relaxation (hyoscine N-butyl bromide; Buscopan, 0.2 mg/kg iv), and sedation (xylazine;
AnaSed, 1 mg/kg iv; Lloyd Laboratories, Shenandoah, IA, USA and buthorphanol tartrate;
Dolorex, 0.05 mg/kg iv; Intervet / Shering-Plough Animal Health, Millsboro, DE, USA) were
induced. Mares were administered penicillin (Agri-Cillin, 6500 U/kg im; AgriLabs, ST. Joseph,
MO, USA) immediately after each procedure and for the next two days. The BPU device used
was a 48 cm-long, automated, spring-loaded instrument with an inner trocar point plunger
containing a 15 × 1.6 mm specimen notch surrounded by an outer 16 ga cutting needle (US
Biopsy, Franklin, IN, USA). This device was introduced through a needle guide mounted on a
probe handle with a 5 to 10 MHz transvaginal ultrasound-guided convex array transducer
(Aloka UST-987-7.5), which was used for placement of the biopsy needle within the ovary. The
ovary was manipulated transrectally and positioned against the vaginal wall so that the pro-
jected needle path could be visualized. When the needle was properly positioned in the ovary,
the inner stylet was advanced to expose the specimen notch. The spring-loaded device was
then fired, which propelled the cutting cannula over the specimen notch, thus collecting any
ovarian tissue resting within the notch. The Biopsy Pick-Up (BPU) needle was then removed
from the transvaginal ultrasound extension probe and the specimen notch exposed in order to
retrieve the biopsy fragment. All procedures were performed by the same operator. The ultra-
sound-guided BPU is a non-invasive method that allows the repeatedly harvesting of ovarian
tissue fragments containing large numbers of preantral follicles from living mares without
affecting their normal short-term ovarian function or general reproductive health [10, 11, 12].

The procedures were performed during the winter (anestrous phase; follicles�20 mm,
absence of corpus luteum, ovulation, and estrus signs) and spring seasons (diestrous phase;
days 4 to 12 of estrous cycle, presence of a corpus luteum and compatible uterine echotexture).
The same mares were used in both seasons.

Histological processing and follicle density
Ovarian fragments were fixed in Bouin’s solution for 2 hours and then kept in 70% alcohol
until histological preparation. The fragments were embedded in paraffin wax and totally cut
into serial sections (7 μm). Every section was mounted and stained with acid Schiff (PAS) and

Effects of Ovarian Dynamics on Preantral Follicle Features

PLOS ONE | DOI:10.1371/journal.pone.0149693 February 22, 2016 3 / 18



hematoxylin. All slides were scanned and the perimeter of digital images from histological sec-
tions was delimited with a photo editing program (Adobe Photoshop CS4, San Jose, CA, USA)
after a scale calibration, and the area’s measurement (cm2) was recorded. Thereafter, the follicle
density was determined by the following formula: follicle density = number of preantral folli-
cles/area of the ovarian section (cm2) as previously reported [13].

Microscopy and end points
Histological sections were analyzed on a light microscope (Nikon E200, Tokyo, Japan) at mag-
nification ×400 and an image capture system (LEICA Imaging Software, Wetzlar, Germany).
The following end points were recorded: number of preantral follicles and follicle density per
ovarian fragment, follicle class distribution, follicle morphology (normal and abnormal), and
ovarian stromal cell density. The preantral follicles were classified according to their develop-
mental stage into primordial, transitional, primary, and secondary, as previously described
[10].

Morphology of preantral follicles
Only preantral follicles with visualized oocyte nucleus were counted and morphologically clas-
sified as normal (follicle containing an intact oocyte and oocyte nucleus surrounded by granu-
losa cells well organized in one or more layers) or abnormal (follicles with a retracted
cytoplasm or disorganized granulosa cell layers detached from the basement membrane and
oocyte with pyknotic nucleus [33]).

Ovarian stromal cell density
Ovarian stromal cell density was evaluated as described by Commin et al. [34], with some mod-
ifications. Briefly, a total of 10% of histological sections for each ovarian fragment were ana-
lyzed. Four random fields (50 × 50 μm = 2,500 μm2) were selected and the stromal cell nuclei
were counted to calculate the mean of stromal cell density per ovarian fragment. All evalua-
tions and measurements were performed by a single operator.

Statistical analyses
All statistical analyses were performed using R statistical software version 3.0.2 (R Foundation
for Statistical Computing, Vienna, Austria). Data for end points that were not normally distrib-
uted were transformed (base 10 logarithmic). The number of preantral follicles and follicle
density per ovarian fragment within the same reproductive phase (anestrous or diestrous) and
side ovary (left or right) were compared by Kruskal-Wallis test, and among reproductive
phases and side ovary by Wilcoxon-Mann-Whitney test. The follicle class distribution and the
percentage of normal preantral follicles among reproductive phases were analyzed by chi-
square test and G-test. Wilcoxon-Mann-Whitney test was used to compare the stromal cell
density and area of the ovarian structures among the reproductive phases and side ovary. In
addition, the former test was used to analyze the number of preantral follicles, follicle density,
and stromal cell density in biopsy fragments harvested from ovaries with antral follicles and
corpus luteum. Correlations between the number of preantral follicles and follicle density with
stromal cell density, and among the number of preantral follicles, follicle density and stromal
cell density with the area of ovarian structures were estimated by Spearman correlation analy-
sis. Data are presented as mean ± SEM, unless otherwise stated. A probability of P< 0.05 indi-
cated that a difference was significant, and P> 0.05 and� 0.1 indicated that a difference
approached significance.
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Results

Ovarian biopsy fragments
A total of 142 ovarian fragments were collected by the biopsy pick-up method (mean, 3.7 frag-
ments per ovary in each reproductive phase) and 13,462 histological sections were evaluated.
Overall, 1,493 preantral follicles were recorded with a mean of 10.5 ± 1.7 follicles per ovarian
fragment [range, 0 to 165; mean coefficient of variation (CV) = 195%]. No adverse effects were
observed in the mares’ cyclicity or general reproductive health after any procedure.

Effect of reproductive phase on preantral follicle density
The mean follicle density was 2.7 follicles per cm2 (range, 0 to 39; CV = 214%) and differed
(P< 0.05) among mares (Table 1). This parameter varied within the same mare in different
reproductive phases and in the overall mean a higher (P< 0.05) follicle density was observed
in the diestrous when compared with the anestrous phase. Data of follicle density related to the
ovary side (left and right) in different reproductive phases are shown (Table 2). Regardless of
reproductive phase, the overall mean follicle density was greater (P< 0.05) in the right ovary.
Furthermore, there was an increase (P< 0.05) in the overall mean follicle density in the dies-
trous phase for both ovary sides.

The mean number of preantral follicles recorded per ovarian fragment during the anestrous
and diestrous phases is shown (Table 3). The overall mean was similar among reproductive
phases (P> 0.05), and among mares within the same phase a higher variability was observed
(P< 0.05). Regardless of reproductive phase, no difference (P> 0.05) was observed for the
number of preantral follicles between the left and right ovaries, but once again there was het-
erogeneity among animals and ovaries of the same animal (Table 4).

Effect of reproductive phase on preantral follicle class distribution and
quality
The distribution of preantral follicle population was 85.3% primordial, 13.1% transitional,
1.4% primary, and 0.13% secondary. The percentage of primordial follicles was higher
(P< 0.05) in the anestrous compared to the diestrous phase. In contrast, the proportion of
growing follicles (transitional, P< 0.05; primary, P< 0.09) was higher in the diestrous phase
(Fig 1).

The overall percentage of normal preantral follicles differed (P< 0.05) among anestrous
(96%) and diestrous phases (98%) (Fig 2). The percentage of normal primordial follicles was
greater (P< 0.05) during the diestrous phase (99%); however, this pattern was not observed
(P> 0.05) for growing follicles (transitional and primary follicles combined).

The percentage of normal preantral follicles in biopsy fragments collected during anestrous
and diestrous phases according to the presence of different ovarian structures is shown
(Table 5). Within ovaries with the same structures (follicles�26 mm), a greater (P< 0.05) per-
centage of normal preantral follicles was observed during the diestrous phase. Moreover, in the
diestrous phase the percentage of normal preantral follicles tended to be higher (P< 0.09) in
fragments collected from ovaries with a corpus luteum compared to ovaries with preovulatory
follicles (�36 mm). Overall, a higher (P< 0.05) preantral follicle normality rate was observed
in biopsy fragments harvested from ovaries with the presence of a corpus luteum. The combi-
nation of preovulatory follicle with a corpus luteum in the same ovary was not considered for
assessing the effect of ovarian structures on preantral follicle quality due to the small sample
size (7.9%; n = 3/38).
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Effect of reproductive phase on stromal cell density
The mean stromal cell density (cells/2,500 μm2) of the ovarian fragments was 32.0 ± 0.1 cells
(range, 6 to 64 cells; CV = 37%). The cell density increased (P< 0.05) in the diestrous phase
(34.2 ± 0.1) when compared to the anestrous phase (30.9 ± 0.1), regardless of the ovary side

Table 1. Mean (± SEM) density of equine preantral follicles in ovarian biopsy fragments collected during anestrous and diestrous phases.

Follicle density (number of preantral follicles/cm2)

Mare Anestrous (n = 73)† Diestrous (n = 69) Total (n = 142)

1 0.6 ± 0.1aA 1.5 ± 0.2bA 1.0 ± 0.1AC

2 0.8 ± 0.1aAB 1.0 ± 0.1bAB 0.9 ± 0.1AC

5 0.6 ± 0.1aA 0.7 ± 0.3aB 0.7 ± 0.1A

8 17.3 ± 2.3aD 16.0 ± 0.9bD 16.4 ± 1.0B

9 1.5 ± 0.2aAB 1.1 ± 0.2aAB 1.3 ± 0.1AC

10 0.7 ± 0.1AB 0.7 ± 0.1AC

11 0.7 ± 0.1aAB 0.5 ± 0.2aB 0.7 ± 0.1A

13 2.6 ± 0.3aCE 3.0 ± 0.4aC 2.7 ± 0.2CD

21 3.1 ± 0.3aC 3.8 ± 0.4aC 3.5 ± 0.2D

32 1.3 ± 0.2aBE 0.9 ± 0.2bAB 1.1 ± 0.1AC

Overall mean 2.1 ± 0.1a 3.5 ± 0.1b 2.7 ± 0.1

† Total number of ovarian fragments collected via ovarian biopsy pick-up method.
a,b Within a row, values without a common superscript differed (P < 0.05).
A,B,C,D,E Within a column, values without a common superscript differed (P < 0.05).

Mare #10 did not participate in the diestrous phase of the experiment.

doi:10.1371/journal.pone.0149693.t001

Table 2. Mean (± SEM) density of equine preantral follicles in ovarian biopsy fragments collected from left and right ovaries in anestrous and dies-
trous phases.

Follicle density (number of preantral follicles/cm2)

Anestrous Diestrous

Mare Left ovary (n = 37)† Right ovary (n = 36) Left ovary (n = 36) Right ovary (n = 33)

1 0.5 ± 0.1aAC 0.7 ± 0.2aA 1.2 ± 0.2aA 1.8 ± 0.3bAD

2 0.9 ± 0.1aAC 0.8 ± 0.2aAC 1.0 ± 0.2aA 1.1 ± 0.2aAB

5 1.0 ± 0.2aAC 0.2 ± 0.1bA 1.4 ± 0.5aA 0.04 ± 0.0bB

8 10.9 ± 1.5aBD 24.6 ± 4.6aD 16.4 ± 1.7aC 15.7 ± 1.1aC

9 0.3 ± 0.1aA 3.3 ± 0.5bB 0.5 ± 0.2aA 1.7 ± 0.3bAD

10 0.9 ± 0.2aAC 0.5 ± 0.1aAC

11 0.7 ± 0.2aAC 0.7 ± 0.2aAC 0.3 ± 0.2aA 0.8 ± 0.3aAB

13 3.0 ± 0.4aD 2.3 ± 0.4bBC 4.2 ± 0.7aB 1.8 ± 0.4bAD

21 4.6 ± 0.5aB 1.4 ± 0.3bAB 4.1 ± 0.7aB 3.7 ± 0.6aD

32 1.3 ± 0.2aC 1.4 ± 0.3aAB 0.1 ± 0.0aA 2.3 ± 0.6bA

Overall mean 1.9 ± 0.1W 2.3 ± 0.2X 3.0 ± 0.2Y 3.9 ± 0.2Z

† Total number of ovarian fragments collected via ovarian biopsy pick-up method.
a,b Within a row and same reproductive phase (anestrous or diestrous), values without a common superscript differed (P < 0.05).
A,B,C,D Within a column, values without a common superscript differed (P < 0.05).
W,X,Y,Z Within a row, regardless of the reproductive phase and ovary side, values without a common superscript differed (P < 0.05).

Mare #10 did not participate in the diestrous phase of the experiment.

doi:10.1371/journal.pone.0149693.t002

Effects of Ovarian Dynamics on Preantral Follicle Features

PLOS ONE | DOI:10.1371/journal.pone.0149693 February 22, 2016 6 / 18



(Fig 3). In addition, when comparing the ovary sides within the same reproductive phases, the
left ovary in anestrous and right ovary in diestrous phases had higher (P< 0.05) stromal cell
densities. Positive correlations of stromal cell density with follicle density (P< 0.07) and num-
ber of preantral follicles (P< 0.05) per ovarian fragment were observed (Fig 4A and 4B).

Table 3. Mean (± SEM) number of equine preantral follicles in ovarian biopsy fragments collected during anestrous and diestrous phases.

Number of preantral follicles per ovarian fragment

Mare Anestrous (n = 73)† Diestrous (n = 69) Total (n = 142)

1 2.7 ± 1.0aA 9.1 ± 5.3aACE 5.7 ± 2.6AE

2 4.7 ± 2.9aAC 4.7 ± 1.2aAE 4.7 ± 1.5ACE

5 2.7 ± 0.9aA 1.7 ± 0.9aB 2.2 ± 0.6AE

8 31.0 ± 2.4aB 60.8 ± 19.6aD 50.9 ± 13.4D

9 7.2 ± 3.5aAD 4.6 ± 1.8aAE 5.8 ± 1.9E

10 4.1 ± 1.2AD 4.1 ± 1.2AE

11 2.3 ± 0.8aA 1.2 ± 0.8aB 1.8 ± 0.5A

13 14.2 ± 5.6aBCD 8.6 ± 3.8aE 11.4 ± 3.3BCE

21 22.3 ± 10.3aBD 16.0 ± 4.5aCE 18.7 ± 4.9B

32 8.2 ± 3.4aAD 3.2 ± 1.9bAB 5.7 ± 2.0AE

Overall mean 8.5 ± 1.4a 12.6 ± 3.1a 10.5 ± 1.7

† Total number of ovarian fragments collected via ovarian biopsy pick-up method.
a,b Within a row, values without a common superscript differed (P < 0.05).
A,B,C,D,E Within a column, values without a common superscript differed (P < 0.05).

Mare #10 did not participate in the diestrous phase of the experiment.

doi:10.1371/journal.pone.0149693.t003

Table 4. Mean (± SEM) number of equine preantral follicles in ovarian biopsy fragments collected from left and right ovaries in anestrous and dies-
trous phases.

Number of preantral follicles per ovarian fragment

Anestrous Diestrous

Mare Left ovary (n = 37)† Right ovary (n = 36) Left ovary (n = 36) Right ovary (n = 33)

1 2.5 ± 1.8 3.0 ± 1.2 5.2 ± 2.5 14.3 ± 12.8

2 6.7 ± 6.0 2.7 ± 0.6 5.0 ± 1.8 4.5 ± 1.8

5 4.2 ± 1.6 1.2 ± 0.6 2.7 ± 1.6 0.3 ± 0.3

8 29.5 ± 5.5 32.5 ± 1.5 44.0 ± 26.4 77.7 ± 30.1

9 1.7 ± 0.7 14.6 ± 6.4 1.7 ± 0.2 7.5 ± 3.2

10 3.7 ± 1.3 4.5 ± 2.2

11 2.2 ± 1.2 2.5 ± 1.2 0.7 ± 0.4 2.0 ± 2.0

13 17.5 ± 10.2 11.0 ± 5.9 11.2 ± 7.6 6.0 ± 2.2

21 34.6 ± 18.2 10.0 ± 7.5 12.0 ± 5.2 20.0 ± 7.5

32 9.2 ± 4.9 7.2 ± 5.5 1.2 ± 1.2 5.2 ± 3.6

Overall mean§ 9.5 ± 2.4 7.4 ± 1.6 9.3 ± 3.5 16.1 ± 5.4

† Total number of ovarian fragments collected via ovarian biopsy pick-up method.
§ No difference (P > 0.05) was detected between ovaries within each reproductive phase.

Comparisons between ovaries and among mares within the same ovary and reproductive phase were not done because of the low number of

observations (range, 2 to 4 fragments per ovary).

Mare #10 did not participate in the diestrous phase of the experiment.

doi:10.1371/journal.pone.0149693.t004
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Effect of ovarian structures on preantral follicle and stromal cell densities
Number of preantral follicles, and follicle and stromal cell densities evaluated according to the
type of ovarian structures present in the ovary are shown (Fig 5). Biopsy fragments harvested
from ovaries with corpus luteum showed a greater (P< 0.05) mean follicle density (5.4 ± 0.4)
when compared with fragments from ovaries with preovulatory follicles (2.5 ± 0.3), and folli-
cles�26 mm (2.5 ± 0.1; Fig 5A). Nevertheless, the mean number of preantral follicles recorded
was similar (P> 0.05) among fragments from ovaries with all types of structures (follicles�26
mm: 9.8 ± 1.7; preovulatory follicle: 12.2 ± 4.6; and corpus luteum: 19.0 ± 9.7; Fig 5B). The
mean stromal cell density was similar (P> 0.05) among ovaries with follicles�26 mm
(30.7 ± 0.1) and preovulatory follicles (30.9 ± 0.3), and differed (P< 0.05) from ovaries with
corpus luteum (36.1 ± 0.2; Fig 5C). In addition, the overall mean area (mm2) of ovarian struc-
tures was greater (P< 0.05) in the diestrous phase and the right ovary had a greater area
(P< 0.05) of ovarian structures when compared to the left ovary regardless of reproductive
phase (Fig 6). Positive correlations (P< 0.05) were observed between the area of ovarian struc-
tures and follicle density, number of preantral follicles, and stromal cell density per ovarian
fragment (Fig 7A–7C).

Discussion
Studies with human ovaries face ethical barriers and limited availability of material for
research, concerns which are lesser with domestic animals. Considering the similarities
between women and mares relative to the dynamics of reproductive cycles [5, 7–9], age-associ-
ated changes in fertility [11], and the physiological preantral follicle heterogeneity [13], the

Fig 1. Mean (± SEM) percentage of equine preantral follicles according to class distribution in ovarian
biopsy fragments collected during anestrous and diestrous phases. a,b Within the same follicle class,
values without a common letter differed (P < 0.05). ‡ Tended to differ from transitional follicles during the
same phase (P < 0.09).

doi:10.1371/journal.pone.0149693.g001
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mare can be considered an important animal model to advance knowledge regarding follicular
population and density in ovarian biopsy fragments. Thus, studies with preantral follicles in
mares (as an animal model) may provide relevant information that could be applied in the
future on clinical human reproduction.

To our knowledge, this study reports for the first time in mares the influence of reproductive
phases (anestrous and diestrous), ovary side (left and right), and ovarian structures (antral

Fig 2. Mean (± SEM) percentage of morphologically normal equine preantral follicles according to
class distribution in ovarian biopsy fragments collected during anestrous and diestrous phases. a,b

Within the same follicle class and overall mean, values without a common letter differed (P < 0.05). Because
of the low number of primary follicles (n = 5) observed in the anestrous phase, transitional and primary
follicles classes were combined.

doi:10.1371/journal.pone.0149693.g002

Table 5. Percentage of morphologically normal equine preantral follicles in biopsy fragments collected during anestrous and diestrous phases,
and presence of different ovarian structures (antral follicles and corpus luteum).

Normal preantral follicles (%)

Ovarian structures† Anestrous (n = 582)‡ Diestrous (n = 796) Overall (n = 1,378)

Follicles �26 mm 96.6a (562/582) 98.8bAB (352/356) 97.4A (914/938)

Preovulatory follicle 97.9A (96/98) 97.9A (96/98)

Corpus luteum 99.7B§ (341/342) 99.7B§ (341/342)

† Antral follicles �26 mm: 6 to 26 mm in diameter; Preovulatory follicle: �36 mm; and Corpus luteum: �30 mm, days 4 to 12 of estrous cycle.
‡ Total number of preantral follicles evaluated.
a,b Within a row, values without a common superscript differed (P < 0.05).
A,B Within a column, values without a common superscript differed (P < 0.05).
§ Tended to differ from the preovulatory follicle (P < 0.09).

doi:10.1371/journal.pone.0149693.t005
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follicles and corpus luteum) on number and density of preantral follicles, and on ovarian stro-
mal cell density from ovarian biopsy fragments.

Primordial follicles constitute the sole and critical reserve for all further follicle recruitment
[35]. In this study, a higher percentage of primordial follicles was observed in the anestrous
phase; however, the percentage of growing follicles (transitional and primary combined) and
the overall percentage of normal follicles were greater during the diestrous phase. These results
indicated that an increase in primordial follicle activation [36] occurred during the diestrous
phase potentially due to higher levels of gonadotropins (FSH and LH) and several growth fac-
tors (epidermal growth factor, EGF; transforming growth factor beta, TGF-β; and vascular
endothelial growth factor, VEGF) during the breeding season [37]. In addition, studies in vitro
have shown the benefits of the aforementioned stimulatory factors on the survival and develop-
ment of preantral follicles [38, 39]. A higher ovarian stromal cell density in both ovary sides
was observed in the diestrous phase compared to the anestrous. Overall, a positive correlation
of stromal cell density with number and density of preantral follicles was observed. Stromal cell
density (number of cells per μm2) in mares was different when compared to bitches (1.7-fold
higher; [34]), or goats and ewes (8.5-fold lower; [40]). Stromal cells are essential for the devel-
opment and survival of grafted isolated follicles and have an important role in co-culture sys-
tems [41, 42]. Furthermore, theca cells are derived from stromal cells and together produce
steroids (androgens) and growth factors (TGF-β, EGF, bone morphogenetic protein 7, BMP-
7), which play a role in follicle activation and survival [43–46]. Once stromal cell and preantral
follicle density have an important role in female fertility, the association of these factors should

Fig 3. Mean (± SEM) density of equine ovarian stromal cells in biopsy fragments collected from left
and right ovaries during anestrous and diestrous phases. a,b Within the same ovarian side and overall
mean, values without a common letter differed (P < 0.05). A,B Within the same reproductive phase, left and
right ovary values without a common letter differed (P < 0.05).

doi:10.1371/journal.pone.0149693.g003
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be considered when selecting the most suitable ovarian biopsy fragments to be used for ART
programs.

In the present study, an increase in follicle density during the diestrous phase was observed
when compared to the anestrous phase, regardless of the ovary side. In addition, a high dispar-
ity in follicle density among and within animals was detected in both reproductive phases. In a
recent study [13] in which the reproductive phase of the estrous cycle was unknown, our group
also reported a high heterogeneity in follicle density among and within mares. Contrary to the
results from follicle density, the overall mean number of equine preantral follicles in biopsy
fragments in the present study was similar for both ovaries (left and right) and reproductive
phases (anestrous and diestrous). One possible explanation for these two findings is that the
biopsies were performed in different areas of the ovarian stroma and recovered fragments with
different sizes and heterogeneous follicle population [27]. On the other hand, the follicle den-
sity in biopsy fragments uses an established measure unity (area) which equalizes all samples,
providing a more accurate parameter to evaluate preantral follicle population for further use in
ART programs.

In our study, the biopsies were performed in different reproductive conditions (anestrous
and diestrous). In order to explain the influence of ovarian structures on the number of prean-
tral follicles and follicle and stromal cell densities, we analyzed the data in two ways: (1) total
area of ovarian structures (small antral follicles, preovulatory follicle, and corpus luteum), and
(2) type of ovarian structures present at the moment of the biopsy procedure. Regarding the
first aspect, the overall mean area of ovarian structures increased by over 79% in the diestrous
phase. In addition, the area of structures had a positive correlation with the number of prean-
tral follicles and follicle and stromal cell densities, and the right ovary showed a greater area
than the left ovary in both studied reproductive phases. Moreover, biopsy fragments collected

Fig 4. Correlation between (A) follicular density and stromal cell density, and (B) number of preantral follicles and stromal cell density. The
association among variables (black line) was evaluated by Spearman correlation coefficient [(A): r = 0.15, P < 0.07; (B): r = 0.16, P < 0.05]. Each point on the
chart represents one ovarian fragment evaluated (n = 142).

doi:10.1371/journal.pone.0149693.g004
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Fig 5. Mean (± SEM) (A) follicle density, (B) number of preantral follicles, and (C) ovarian stromal cell
density in biopsy fragments collected from ovaries with antral follicles and corpus luteum.Dashed
line represents the average for (A) follicle density, (B) number of preantral follicles, and (C) stromal cell
density. a,b Within the same parameter evaluated, values without a common letter differed (P < 0.05). Follicles
�26 mm: 6 to 26 mm in diameter; Preovulatory follicle:�36 mm; and Corpus luteum:�30 mm, days 4 to 12 of
estrous cycle.

doi:10.1371/journal.pone.0149693.g005
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from ovaries with a corpus luteum had greater follicle and stromal cell densities and percentage
of normal preantral follicles. The influence of corpus luteum on number of preantral follicles in
different species has been reported (bovine: [47]; bubaline: [23]; ovine: [21]). The primary func-
tion of the corpus luteum is the production of progesterone [48] and prostaglandin F2α [49],
hormones that can improve the quality of preantral follicles [50]. Furthermore, the proliferation
index of endothelial cells is intense in the early luteal phase [51], which is characterized by a
dense network of capillaries in the ovary. Therefore, a potential physiological mechanism
behind our findings might be that the presence of an active and highly vascularized corpus
luteum may contribute to better diffusion of growth factors and hormones throughout the ovar-
ian stroma, favoring the quality of preantral follicles. In addition, a positive correlation between
the degree of cell proliferation and vascular area has been reported during early preantral follicle
growth [52]. Consequently, the greater percentage of transitional and primary follicles and nor-
mal primordial follicles observed in our data during the diestrous phase makes it tempting to
speculate that preantral follicle recruitment in mares may be influenced by stromal vascular sup-
ply and blood flow perfusion. Further studies need to be performed to address this subject.

To our knowledge, there are no studies that described the association among the number of
preantral follicles, follicle density, and stromal cell density with the area of ovarian structures for
any species. This fact allowed us to propose a hypothetical mechanism to support the results
observed in our study (Fig 8). During the anestrous phase in mares, there is low follicle activity
and small follicles are present in the ovarian stroma. In contrast, in the diestrous phase, multiple
structures such as small and medium antral follicles, preovulatory follicles, and corpus luteum

Fig 6. Mean (± SEM) area (mm2) of equine ovarian structures (antral follicles and corpus luteum)
during the biopsy pick-up procedures performed during anestrous and diestrous phases. a,b Within
the same ovarian side and overall mean, values without a common letter differed (P < 0.05). A,B Within the
same reproductive phase, left and right ovary values without a common letter differed (P < 0.05).

doi:10.1371/journal.pone.0149693.g006
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Fig 7. Correlation coefficients between (A) follicle density, (B) number of preantral follicles, and (C)
ovarian stromal cell density with area of ovarian structures (antral follicles and corpus luteum). The
association among variables (black line) was evaluated by Spearman correlation [(A): r = 0.21, (B): r = 0.21,
(C): r = 0.10; P < 0.05]. Each point on the chart represents one ovarian fragment evaluated.

doi:10.1371/journal.pone.0149693.g007

Effects of Ovarian Dynamics on Preantral Follicle Features

PLOS ONE | DOI:10.1371/journal.pone.0149693 February 22, 2016 14 / 18



can be present in the same ovary. This fact indicates that denser structures, such as the corpus
luteum associated or not with larger antral follicles, can exert a greater pressure in the ovarian
parenchyma and cause a consequent clustering of preantral follicles and stromal cells per unit
area. In the anestrous phase, the absence of large structures allows lower compression in the
ovarian tissue and therefore a possible dispersion of the preantral follicle population in the ovary.

In summary, our results indicated that: (1) the diestrous phase influenced positively the
quality of preantral follicles, percentage of growing follicles, and follicle and stromal cell densi-
ties; (2) the area of ovarian structures affected the stromal cell density, and the number of pre-
antral follicles and follicle density; and (3) the corpus luteum had a positive effect on the
quality of preantral follicles, and follicle and stromal cell densities. In addition, we discovered
herein a potential ideal scenario for collection of richer ovarian fragments (i.e. higher preantral
follicle and stromal cell densities) using ovarian biopsy procedure. These findings reinforce the
concept of the use of the mare as a model to provide comparative insights about preantral folli-
cle density and ovarian plasticity.
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