6,190 research outputs found

    Vacuum stability conditions of the economical 3-3-1 model from copositivity

    Get PDF
    By applying copositivity criterion to the scalar potential of the economical 3313-3-1 model, we derive necessary and sufficient bounded-from-below conditions at tree level. Although these are a large number of intricate inequalities for the dimensionless parameters of the scalar potential, we present general enlightening relations in this work. Additionally, we use constraints coming from the minimization of the scalar potential by means of the orbit space method, the positivity of the squared masses of the extra scalars, the Higgs boson mass, the ZZ' gauge boson mass and its mixing angle with the SM ZZ boson in order to further restrict the parameter space of this model.Comment: 22 pages, 7 figures, added text and references. Matches published versio

    The Large Aperture GRB Observatory

    Full text link
    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.Comment: 4 pages, proceeding of 31st ICRC 200

    Water Cherenkov Detectors response to a Gamma Ray Burst in the Large Aperture GRB Observatory

    Full text link
    In order to characterise the behaviour of Water Cherenkov Detectors (WCD) under a sudden increase of 1 GeV - 1 TeV background photons from a Gamma Ray Burst (GRB), simulations were conducted and compared to data acquired by the WCD of the Large Aperture GRB Observatory (LAGO). The LAGO operates arrays of WCD at high altitude to detect GRBs using the single particle technique. The LAGO sensitivity to GRBs is derived from the reported simulations of the gamma initiated particle showers in the atmosphere and the WCD response to secondaries.Comment: 5 pages, proceeding of the 31st ICRC 200

    Novel spatial domain integral equation formulation for the analysis of rectangular waveguide steps close to arbitrarily shaped dielectric and/or conducting posts

    Get PDF
    [EN] In this paper, a novel integral equation formulation expressed in the spatial domain is proposed for the analysis of rectangular waveguide step discontinuities. The important novelty of the proposed formulation is that which allows to easily take into account the electrical influence of a given number of arbitrarily shaped conducting and dielectric posts placed close to the waveguide discontinuity. For the sake of simplicity, and without loss of generality, the presented integral equation has been particularized and solved for inductive rectangular waveguide geometry. In this case, the integral equation mixed-potentials kernel is written in terms of parallel plate Green¿s functions with an additional ground plane located on the waveguide step. Therefore, the unknowns of the problem are reduced to an equivalent magnetic surface current on the step aperture and equivalent magnetic and electric surface currents on the dielectric and conducting posts close to the discontinuity. The numerical solution of the final integral equation is efficiently computed after the application of acceleration techniques for the slowly convergent series representing the Green¿s functions of the problem. The numerical method has been validated through several simulation examples of practical microwave devices, including compact size band-pass cavity filters and coupled dielectric resonators filters. The results have been compared to those provided by commercial full-wave electromagnetic simulation software packages, showing in all cases a very good agreement, and with substantially enhanced numerical efficiencies.This research work has been financially supported by the Spanish Ministerio de Economia y Competitividad in the frame of the projects "Demostradores Tecnologicos de Filtros y Multiplexores con Respuestas Selectivas y Sintonizables en Nuevas Guias Compactas para Aplicaciones Espaciales (COMPASSES)" with Ref. TEC2016-75934-C4-1-R, and "Analisis y Diseno de Nuevos Componentes en Microondas y Milimetricas para Comunicaciones por Satelite (MILISAT)" with Ref. TEC2016-75934-C4-4-R. As an additional financial source we thank the regional agency Fundacion Seneca from Region de Murcia under the research project "Desarrollo de Antenas y Componentes Pasivos de Microondas para Sistemas Avanzados de Comunicaciones" with Ref. 19494/PI/14 and Ref. 20147/EE/17, and the PhD scholarship granted by the Spanish national Ministerio de Educacion, Cultura y Deporte with Ref. FPU15/02883. All results of this paper can be reproduced by using the data and information contained in the drawings and in the captions of the figures included in the paper.Quesada Pereira, FD.; Gomez Molina, C.; Alvarez Melcon, A.; Boria Esbert, VE.; Guglielmi, M. (2018). Novel spatial domain integral equation formulation for the analysis of rectangular waveguide steps close to arbitrarily shaped dielectric and/or conducting posts. Radio Science. 53(4):406-419. https://doi.org/10.1002/2017RS006429S406419534Arcioni , P. Bressan , M. Conciauro , G. Perregrini , L. 1997 Generalized Y-matrix of arbitrary H-plane waveguide junctions by the BI-RME method IEEE MTT-S International Microwave Symposium Digest 211 214 DenverCapolino, F., Wilton, D. R., & Johnson, W. A. (2005). Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method. IEEE Transactions on Antennas and Propagation, 53(9), 2977-2984. doi:10.1109/tap.2005.854556Catina, V., Arndt, F., & Brandt, J. (2005). Hybrid surface integral-equation/mode-matching method for the analysis of dielectric loaded waveguide filters of arbitrary shape. IEEE Transactions on Microwave Theory and Techniques, 53(11), 3562-3567. doi:10.1109/tmtt.2005.857343Fructos, A. L., Boix, R. R., Mesa, F., & Medina, F. (2008). An Efficient Approach for the Computation of 2-D Green’s Functions With 1-D and 2-D Periodicities in Homogeneous Media. IEEE Transactions on Antennas and Propagation, 56(12), 3733-3742. doi:10.1109/tap.2008.2007281Guglielmi, M., & Newport, C. (1990). Rigorous, multimode equivalent network representation of inductive discontinuities. IEEE Transactions on Microwave Theory and Techniques, 38(11), 1651-1659. doi:10.1109/22.60012Hu, Y. L., Li, J., Ding, D. Z., & Chen, R. S. (2016). Analysis of Transient EM Scattering From Penetrable Objects by Time Domain Nonconformal VIE. IEEE Transactions on Antennas and Propagation, 64(1), 360-365. doi:10.1109/tap.2015.2501437Kalantari, M., & Paran, K. (2017). Analysing Metamaterial Layer by Simpler Approach Based on Mode Matching Technique. IET Microwaves, Antennas & Propagation, 11(5), 607-616. doi:10.1049/iet-map.2016.0687Mrvić, M., Potrebić, M., & Tošić, D. (2016). CompactEplane waveguide filter with multiple stopbands. Radio Science, 51(12), 1895-1904. doi:10.1002/2016rs006169Pérez-Soler, F. J., Quesada-Pereira, F. D., Cañete Rebenaque, D., Pascual-García, J., & Alvarez-Melcon, A. (2007). Efficient integral equation formulation for inductive waveguide components with posts touching the waveguide walls. Radio Science, 42(6). doi:10.1029/2006rs003591POGGIO, A. J., & MILLER, E. K. (1973). Integral Equation Solutions of Three-dimensional Scattering Problems. Computer Techniques for Electromagnetics, 159-264. doi:10.1016/b978-0-08-016888-3.50008-8Quesada Pereira , F. Boria , V. E. Gimeno , B. Cañete Rebenaque , D. Pascual Garcia , J. Alvarez Melcon , A. 2006 Investigation of multipaction phenomena in inductively coupled passive waveguide components for space applications IEEE MTT-S International Microwave Symposium Digest 246 249 San Francisco, CAPereira, F. D. Q., Esbert, V. E. B., Garcia, J. P., Ana Vidal Pantaleoni, Melcon, A. A., Tornero, J. L. G., & Gimeno, B. (2007). Efficient Analysis of Arbitrarily Shaped Inductive Obstacles in Rectangular Waveguides Using a Surface Integral-Equation Formulation. IEEE Transactions on Microwave Theory and Techniques, 55(4), 715-721. doi:10.1109/tmtt.2007.893673Quesada Pereira, F. D., Vera Castejón, P., Álvarez Melcón, A., Gimeno, B., & Boria Esbert, V. E. (2011). An efficient integral equation technique for the analysis of arbitrarily shaped capacitive waveguide circuits. Radio Science, 46(2), n/a-n/a. doi:10.1029/2010rs004458Stumpf, M., & Leone, M. (2009). Efficient 2-D Integral Equation Approach for the Analysis of Power Bus Structures With Arbitrary Shape. IEEE Transactions on Electromagnetic Compatibility, 51(1), 38-45. doi:10.1109/temc.2008.2009223Wei, X.-C., Li, E.-P., Liu, E.-X., & Cui, X. (2008). Efficient Modeling of Rerouted Return Currents in Multilayered Power-Ground Planes by Using Integral Equation. IEEE Transactions on Electromagnetic Compatibility, 50(3), 740-743. doi:10.1109/temc.2008.924392Huapeng Zhao, En-Xiao Liu, Jun Hu, & Er-Ping Li. (2014). Fast Contour Integral Equation Method for Wideband Power Integrity Analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(8), 1317-1324. doi:10.1109/tcpmt.2014.232724

    The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR

    The 2HWC HAWC Observatory Gamma Ray Catalog

    Full text link
    We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
    corecore