166 research outputs found

    Age-related subproteomic analysis of mouse liver and kidney peroxisomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite major recent advances in the understanding of peroxisomal functions and how peroxisomes arise, only scant information is available regarding this organelle in cellular aging. The aim of this study was to characterize the changes in the protein expression profile of aged versus young liver and kidney peroxisome-enriched fractions from mouse and to suggest possible mechanisms underlying peroxisomal aging. Peroxisome-enriched fractions from 10 weeks, 18 months and 24 months C57bl/6J mice were analyzed by quantitative proteomics.</p> <p>Results</p> <p>Peroxisomal proteins were enriched by differential and density gradient centrifugation and proteins were separated by two-dimensional electrophoresis (2-DE), quantified and identified by mass spectrometry (MS). In total, sixty-five proteins were identified in both tissues. Among them, 14 proteins were differentially expressed in liver and 21 proteins in kidney. The eight proteins differentially expressed in both tissues were involved in β-oxidation, α-oxidation, isoprenoid biosynthesis, amino acid metabolism, and stress response. Quantitative proteomics, clustering methods, and prediction of transcription factors, all indicated that there is a decline in protein expression at 18 months and a recovery at 24 months.</p> <p>Conclusion</p> <p>These results indicate that some peroxisomal proteins show a tissue-specific functional response to aging. This response is probably dependent on their differential regeneration capacity. The differentially expressed proteins could lead several cellular effects: such as alteration of fatty acid metabolism that could alert membrane protein functions, increase of the oxidative stress and contribute to decline in bile salt synthesis. The ability to detect age-related variations in the peroxisomal proteome can help in the search for reliable and valid aging biomarkers.</p

    Padre tiene, Assi se interpreta esta voz Ioab, fue Capitan General de David :su vida y hazañas en Historia ...

    Get PDF
    Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 2009-2010Sign.: 2[asterisco]3, [asterisco]4, A-B4, C-Y8, [flor]4Cada parte ccon pag. propiaPort. esc. xil.Contiene: "Brachylogia purpurea: relacion breve de pontifices y cardenales de las Ordenes de Predicadores y Menores" (en 30 h

    Adaptive power shifting for power-constrained heterogeneous systems

    Get PDF
    The number and heterogeneity of compute devices, even within a single compute node, has been steadily on the rise. Since all systems must operate under a power cap, the number of discrete devices that can run simultaneously at their highest frequency is limited by the globally-imposed power cap. Current systems incorporate a centralized power management unit that statically controls the distribution of power among the devices within the node. However, such static distribution policies are unaware of the dynamic utilization profile across the devices, which leads to unfair power allocations that end up degrading system throughput performance. The problem is particularly acute in the presence of heterogeneity since type-specific performance-boost capabilities cannot be leveraged via utilization-agnostic static power allocations. This paper proposes Adaptive Power Shifting for multi-accelerator heterogeneous systems (APS), a technique that leverages system utilization information to dynamically allocate and re-distribute power budgets across multiple discrete devices. Democratizing the power allocation based on dynamic needs results in dramatic speedup over a need-agnostic static allocation. We use APS in a real OpenPOWER compute node with 2 CPUs and 4 GPUs to demonstrate the value of on-demand, equitable power allocations. Overall, the proposed solution increases performance with respect to two state-of-the-art techniques by up to 14.9% and 13.8%.This work has been partially supported by the European Union’s Horizon 2020 research and innovation program under the Mont-Blanc 2020 project (grant agreement 779877), by the Spanish Ministry of Science and Innovation (contract PID2019-107255GB-C22), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and by the IBM/BSC Deep Learning Center initiative. Ll. Alvarez has been supported in part by the Spanish Ministry of Economy, Industry and Competitiveness under the Juan de la Cierva Formacion fellowship No. FJCI-2016- 30984. M. Moreto has been supported in part by the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal fellowship No. RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    Perivellosa disease massive fibrin deposition, association with Down syndrome: case report and literature review

    Get PDF
    The disease perivellosa massive fibrin deposition (MPFD), is a condition characterized by uncontrolled mainly fibrin deposition intervillous space. The incidence worldwide is 0.028% per 1000 live births, there is only one case report where this condition is associated with trisomy 21, in our country there are no reports of this disease. The MPFD has high morbidity, obstetric mortality, recurrence, as well as neurodevelopmental significance of newborns. The etiology until the moment is unknown, difficult diagnosis and management for the obstetrician. The aim is to report MPFD association with trisomy 21 (T21) and a review of the medical literature regarding this condition

    The Neuroprotector Benzothiazepine CGP37157 Extends Lifespan in C. elegans Worms

    Get PDF
    The benzothiazepine CGP37157 has shown neuroprotective effects in several in vitro models of excitotoxicity involving dysregulation of intracellular Ca2+ homeostasis. Although its mechanism of neuroprotection is unclear, it is probably related with some of its effects on Ca2+ homeostasis. CGP37157 is a well-known inhibitor of the mitochondrial Na+/Ca2+ exchanger (mNCX). However, it is not very specific and also blocks several other Ca2+ channels and transporters, including voltage-gated Ca2+ channels, plasma membrane Na+/Ca2+ exchanger and the Ca2+ homeostasis modulator 1 channel (CALHM1). In the present work, we have studied if CGP37157 could also induce changes in life expectancy. We now report that CGP37157 extends C. elegans lifespan by 10%–15% with a bell-shaped concentration-response, with high concentrations producing no effect. The effect was even larger (25% increase in life expectancy) in worms fed with heat-inactivated bacteria. The worm CGP37157 concentration producing maximum effect was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and was close to the IC50 for inhibition of the Na+/Ca2+ exchanger. CGP37157 also extended the lifespan in eat-2 mutants (a model for caloric restriction), suggesting that caloric restriction is not involved in the mechanism of lifespan extension. Actually, CGP37157 produced no effect in mutants of the TOR pathway (daf15/unc24) or the insulin/insulin-like growth factor-1 (IGF-1) pathway (daf-2), indicating that the effect involves these pathways. Moreover, CGP37157 was also ineffective in nuo-6 mutants, which have a defect in the mitochondrial respiratory chain complex I. Since it has been described that neuroprotection by this compound in cell cultures is abolished by mitochondrial inhibitors, this suggests that life extension in C. elegans and neuroprotection in cell cultures may share a similar mechanism involving mitochondria

    The Bacterial and Fungal Gut Microbiota of the Greater Wax Moth, Galleria mellonella L. Consuming Polyethylene and Polystyrene

    Get PDF
    Plastic production has been increasing exponentially in the last 60 years, but plastic disposal is out of control, resulting in the pollution of all ecosystems on Earth. Finding alternative environmentally sustainable choices, such as biodegradation by insects and their associated gut microbiota, is crucial, however we have only begun to characterize these ecosystems. Some bacteria and one fungus have been previously identified in the gut of Greater Wax Moth larvae (Galleria mellonella L., Lepidoptera, Pyralidae) located mainly in the Northern hemisphere. The aim of this study was to describe changes in the gut microbiota associated with the consumption of polyethylene and polystyrene by the Greater Wax Moth in Argentina, considering both bacteria and fungi. Larvae were fed polyethylene, polystyrene and beeswax as control for 7 days. Next generation sequencing revealed changes in the bacterial gut microbiome of the wax moth larvae at the phyla and genus levels, with an increase in two Pseudomonas strains. The fungal communities showed no differences in composition between diets, only changing in relative abundance. This is the first report of both bacterial and fungal communities associated with a plastivore insect. The results are promising and call for more studies concerning a potential multi-kingdom synergy in the plastic biodegradation process.Fil: Ruiz Barrionuevo, Juliana María. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Vilanova Cuevas, Brayan. Universidad de Puerto Rico; Puerto RicoFil: Alvarez, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Martín, Eduardo. Universidad Nacional de Tucumán; Argentina. Fundación Miguel Lillo; ArgentinaFil: Malizia, Agustina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Galindo Cardona, Alberto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: de Cristobal, Ricardo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Occhionero, M. Angelica. Universidad Nacional de Tucumán; ArgentinaFil: Chalup, Adriana Elizabeth. Universidad Nacional de Tucumán; Argentina. Fundación Miguel Lillo; ArgentinaFil: Monmany, Ana Carolina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Godoy Vitorino, Filipa. Universidad de Puerto Rico; Puerto Ric
    corecore