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Abstract—The number and heterogeneity of compute devices, even within a single compute node, has been steadily on the rise.
Since all systems must operate under a power cap, the number of discrete devices that can run simultaneously at their highest
frequency is limited by the globally-imposed power cap. Current systems incorporate a centralized power management unit that
statically controls the distribution of power among the devices within the node. However, such static distribution policies are unaware of
the dynamic utilization profile across the devices, which leads to power allocations that end up degrading system throughput
performance. The problem is particularly acute in the presence of heterogeneity since type-specific performance-boost capabilities
cannot be leveraged via utilization-agnostic static power allocations.
This paper proposes Adaptive Power Shifting for multi-accelerator heterogeneous systems (APS), a technique that leverages system
utilization information to dynamically allocate and re-distribute power budgets across multiple discrete devices. Democratizing the
power allocation based on dynamic needs results in dramatic speedup over a need-agnostic static allocation. We use APS in a real
OpenPOWER compute node with 2 CPUs and 4 GPUs to demonstrate the value of on-demand, equitable power allocations. Overall,
the proposed solution increases performance with respect to two state-of-the-art techniques by up to 14.9% and 13.8%.

Index Terms—Heterogeneous systems, Power-constrained systems, Accelerator system design, Power-efficient architectures.
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1 INTRODUCTION

IN recent years, data centers have started incorporating
multiple diverse accelerators per node to provide ef-

ficient performance growth through specialization. How-
ever, complex heterogeneous systems with multiple discrete
accelerators cannot afford to fully power all the devices
simultaneously [1], [2]. To overcome this limitation, modern
systems include mechanisms to adjust the power budget
of the devices, allowing them to safely operate under a
given power cap. The power cap of a system can be set
for a variety of reasons within a data center, including safe
operation modes when power delivery and thermal limits
have been reached, and economical reasons.

Efficiently distributing power in heterogeneous systems
with multiple discrete accelerators and varying power caps
is a challenging problem. The growing amount of accelera-
tors requires power distribution algorithms to be simple and
scalable to ensure fast response times. Moreover, the latency
of communicating control signals between discrete devices
is usually very long, so minimizing device communation
is a must. On top of this, the proliferation of different
accelerators (GPUs, FPGAs, ASICs, etc.) manufactured by
different vendors imposes power management solutions to
use generic knobs present in all kind of devices, such as Dy-
namic Voltage Frequency Scaling (DVFS). The nature of het-
erogeneous workloads further complicates the problem, as
their power demands can change due to program phases [3],
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accelerators being active or idle in different phases [4], and
multiple programs running in different devices.

Previous works have studied how to efficiently dis-
tribute power under a limited power budget in different
scenarios, as summarized in Table 1. Most of these works
propose power distribution techniques for a single chip.
The most common technique is to apply per-core DVFS
to maximize the overall performance [5], [6], [7]. Also,
some works combine DVFS with policies to control thread
scheduling [8], core allocation [9], [10], power gating [11],
and SMT levels [12]. Similarly, power and thermal manage-
ment of heterogeneous chips with a single integrated GPU,
such as Intel’s Dynamic Power and Thermal Framework
(DPTF) [13] or AMD’s Bidirectional Application Power
Management (BAPM) [14], use a centralized hardware con-
troller inside the chip that considers power and thermal
constraints. All these techniques are not directly applicable
to systems with multiple discrete devices since single chips
do not have information about the requeriments and the
power budgets of the discrete devices. Furthermore, they
use on-chip hardware controllers with adhoc interfaces,
they rely on power knobs that are not present in all types
of devices, they do not suffer from long communication
latency between devices, and they consider on-chip power
and thermal constraints that do not apply to systems with
discrete devices. Other works distribute power between
CPUs and a single GPU at application level, as summa-
rized in Table 2. Many of these works intercept calls to
the GPU kernels and shift power where the computation
takes place [15], [16], [17], [18], [19], [20], [21]. However,
this approach does not work in systems with multiple
accelerators running multiprogrammed workloads. In such
sceneraio, a centralized solution is needed to coordinate the
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TABLE 1: Previos work on distributing power among com-
ponents in different scenarios.
Scope of work Target workloads Work

Core level Mixed CPU workloads [5], [8], [11], [26], [27]

Heterogeneous Chip Single CPU-GPU workloads [15], [16], [17], [18], [19], [20], [21]

Homogeneous System Mixed CPU workloads [6], [7], [9], [10], [12], [28]

Heterogeneous System Multiple Mixed CPU workloads
and CPU-GPU workloads This work, [24], [25]

TABLE 2: Comparison with the state of the art
Related work Works for single

CPU-GPU workloads
Works for multiple
CPU-GPU workloads

Power cap in
Prediction Failure

[15], [16], [17], [18], [19], [20], [21] ! % %

[24], [25] ! ! %

This work ! ! !

power consumption of multiple devices executing multiple
workloads. For these reasons, high-performance systems
with discrete accelerators do not incorporate any of the
aforementioned solutions.

Industrial solutions to distribute power in heterogeneous
systems with multiple discrete devices, such as IBM On
Chip Controller (OCC) [22] or AMD System Management
Unit (SMU) [23], use conservative heuristics to set indi-
vidual power budgets for all the discrete devices present
in the system. A centralized controller is responsible for
managing the power consumption of the devices connected
to it. When a power cap is enforced, the controller ensures
that the system power consumption is below the power cap
by dividing the power cap among the devices and informing
them of their individual power budget. Then, individual
devices are allowed to independently adjust their frequen-
cies to honor the specified power budget while maximizing
the performance or power efficiency of the device. This de-
coupled scheme loses opportunities for optimization, as the
centralized controller sets the power budgets of the devices
without considering their utilization, their contribution to
the overall system performance, or their power headroom.
Tangram [24] proposes a hierarchical organization of robust
controllers that consider the throughput of the devices to
distribute power among them. However, Tangram uses a
complex algorithm with a long search phase and it requires
a substantial amount of long latency communication be-
tween controllers, which compromises response time and
scalability. Market solutions can also be used in heteroge-
neous systems [25], although no prior work has evaluated
them in a setup with multiple discrete accelerators.

This paper presents Adaptive Power Shifting for heteroge-
neous systems (APS), a technique that maximizes the per-
formance of power-constrained heterogeneous systems by
leveraging system information to distribute power among
all the devices. APS advocates for a hardware/software
power distribution mechanism that carefully balances effi-
ciency and fairness by leveraging dynamic load informa-
tion. In contrast with previous works, APS is agnostic of the
devices (CPU, GPU, or other accelerators), it uses a simple
and scalable heuristic that requires minimal communica-
tion between devices, it works for single applications and
multiprogrammed workloads, and it can be implemented in
current systems without any hardware modification, as we
demonstrate with the deployment on a real OpenPOWER
system with 2 CPUs and 4 GPUs. APS uses device utilization
as the metric for optimization, which is very well suited for
heterogeneous systems with devices with different power

and performance characteristics, and it is also a very ac-
curate proxy for power consumption. At execution time,
APS monitors the power consumption and the utilization
of all the devices in the system and dynamically shifts
the power between them. To maximize performance, APS
enables devices that are more utilized to have a higher
power budget than devices that are less utilized. APS also
captures changes in the power cap and quickly re-assigns
the power budgets of the devices to minimize the time
the system is over the specified power cap and to reduce
the time a device is assigned an underperforming power
budget. This paper makes the following contributions:
• We demonstrate that current solutions in modern sys-

tems can lead to over or under provisioning the power
budget of individual devices in a power-constrained het-
erogeneous system. Current solutions cannot respond
to the changing power requirements of heterogeneous
workloads that use multiple devices in different program
phases. Thus, a dynamic, efficient, and scalable power dis-
tribution technique is needed to maximize performance
under various different power demands within a node
composed of multiple discrete heterogeneous devices.

• We propose APS, a technique that distributes the power
among the devices of a power-constrained heterogeneous
system based on the utilization of each device. APS in-
cludes mechanisms to maximize the performance of the
system while honoring a power cap and quickly and
efficiently react to changes in the power cap.

• We implement and evaluate APS to manage the power
distribution on an OpenPOWER system with 2 CPUs and
4 GPUs. When running under different power caps, APS
improves performance over static power distributions up
to 15.9% for single CPU-GPU applications and up to 20.5%
for multiprogrammed workloads. APS also improves per-
formance up to 14.9% over Tangram [24] and up to 13.8%
over a state-of-the-art market solution [25].

This paper is organized as follows: Section 2 provides
the required background and discusses the related work,
Section 3 motivates this work, Section 4 presents APS, Sec-
tion 5 describes the experimental setup, Section 6 evaluates
APS, and Section 7 remarks the conclusions of this work.

2 BACKGROUND AND RELATED WORK

2.1 Power Capping
Dynamic Voltage and Frequency Scaling (DVFS) provides
a mechanism to adjust the voltage and the frequency of
a chip. DVFS exposes different combinations of voltage
and frequency in which the hardware can safely operate.
DVFS is included in virtually all system making it the most
used hardware knob to control the power consumption
of a device. In this work, we use DVFS to manage the
power consumption of the devices to make APS generic and
directly applicable to any system, regardless of the type of
accelerators it includes.

To ensure heterogeneous systems do not exceed their
power cap, designers estimate the peak power consumption
of the individual devices and add them up to get the peak
power consumption of the system [26], [29]. However, mod-
ern computing systems are often restricted to consume less
power than their peak for a variety of reasons, including safe
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TABLE 3: Static power distributions for multiple devices in
a system with 2 CPUs and 4 GPUs.

Power Cap (W) Fairness CPU Prio. GPU Prio.
CPUs GPUs CPUs GPUs CPUs GPUs

1000 166×2 166×4 200×2 150×4 75×2 212×4
900 150×2 150×4 200×2 125×4 75×2 187×4
800 133×2 133×4 200×2 100×4 75×2 162×4
700 116×2 116×4 200×2 75×4 75×2 137×4
600 100×2 100×4 200×2 50×4 75×2 112×4

operation modes when power delivery and thermal limits
are reached, and cost reasons in servers and data centers.
When these situations arise, a power cap is introduced in
the system and the available power is distributed among
the devices. In addition, globally assigning a power cap in
the system can also be useful to address point-wise heat
levels, specially if combined with capable cooling systems
and safe operation modes.

Current industrial systems with multiple devices use
static power distribution schemes, i.e., for a given power
cap, they set a fixed power budget for every device re-
gardless of the characteristics of the workloads running on
the devices. For example, the IBM OCC controller of the
OpenPOWER architecture provides a mechanism to adjust
the power budgets of a group of CPUs and the GPUs
when a power cap is introduced. As shown in previous re-
search [22], this mechanism can be used to implement three
static power distributions: (i) Fairness equally distributes
the system power cap among all the devices in the system;
(ii) CPU Priority (CPUprio) distributes the system power
cap between the CPUs and the GPUs with different weights
in favor of the CPUs; and (iii) GPU Priority (GPUprio)
distributes the system power cap between the CPUs and
the GPUs with different weights in favor of the GPUs.

Table 3 shows the power budgets of the devices for each
policy in a heterogeneous system with 2 CPUs and 4 GPUs
and power caps of 1000, 900, 800, 700, and 600W. The static
policies shown in Table 3 set the power budget of the de-
vices to fixed values, without considering their utilization,
which can lead to underperforming power distributions.
For instance, if a workload is CPU intensive and the power
distribution is not CPUprio, CPUs run at a low frequency,
leading to an overall slowdown. Moreover, if an application
has CPU and GPU phases, static power distributions are
unable to boost specific accelerators at the appropriate time.

Once the controllers have assigned power budgets to
all the devices, these can adjust their running frequency
inside a range of available frequencies that honor their
power budget. The most used CPU governor in Linux is the
ondemand governor, which periodically calculates the CPU
utilization (non-idle cycles) and sets a corresponding fre-
quency [30]. Notice that ondemand governor does not have
power information, failing to deliver the best frequency
when a power cap is imposed, and it does not consider
possible interactions with other devices that need a higher
power budget. Similarly, GPUs have a Maximum Efficiency
mode [31] that sets maximum frequency when a workload
is running and it lowers the frequency otherwise. This
decoupled scheme loses opportunities for optimization, as
the power distribution among the devices does not consider
their utilization, limiting the range of available frequencies
for the devices to maximize performance or efficiency.

2.2 Related Work

To overcome the limitations of static distributions, there has
been considerable work in the literature that proposes dy-
namic solutions for different types of systems and scenarios.

2.2.1 Homogeneous Chips
Previous research on power distribution targets homoge-
neous multicore processors. Isci et al. [5] propose to monitor
the performance of the cores and apply DVFS to maximize
the overall performance under a power cap. Winter et
al. [8] present different scheduling and power management
algorithms on a 256-core architecture. Adileh et al. [32],
[33] schedule applications into out-of-order or in-order cores
based on their performance and power consumption. Some
works propose to coordinate the frequencies of the CPU
and the memory to maximize performance [26], [34], [35],
coordinate DVFS with other techniques such as power
gating [11], core allocation [9], [10], and SMT levels [12],
save energy [27] under a power cap, and manage power
through a resource controller based on market solutions [6]
and machine learning models [7].

APS targets a system with multiple heterogeneous dis-
crete devices and changing power caps, which makes the
problem more challenging due to the complexity of such
systems and the characteristics of the workloads that sel-
domly use the accelerators. APS can be coupled with the
aforementioned techniques to optimize the performance
within the specified power budget for the CPUs.

2.2.2 Heterogeneous Systems with a Single GPU
Some research work has studied how to distribute power
in heterogeneous systems with only one accelerator. These
solutions are tailored to a single CPU-GPU application,
and their algorithms distribute power only when compute
kernels start and finish their execution on the accelerator.

Majumdar et al. [17] predicts the best hardware configu-
ration for GPU computation kernels at runtime to improve
energy-efficiency by tracking recent execution history. Jiao et
al. [18] coordinate the execution of concurrent kernels and
DVFS to improve the energy efficiency of a system with a
single GPU. Bailey et al. [15] coordinate the DVFS of a power
capped system with a single GPU executing a single CPU-
GPU application. Similarly, Komoda et al. [16] coordinate
DVFS and task mapping in a system with a single GPU.

The main drawback of these solutions is that they do
not apply to multiprogrammed workloads, since taking
decisions at system level based on the combination of profile
information of single applications leads to underperform-
ing configurations. To overcome this limitation, APS uses
sampling to continuously monitor the requirements of the
devices, independently of the application, so it is not limited
to monitoring activity and power distribution at the granu-
larity of compute kernels. This allows APS to immediately
react to changes in the power cap and to quickly set an
optimal power distribution. None of the aforementioned
solutions considers reacting to changes in the power cap.

Sampling-based techniques are also used by Paul et al.
to distribute the power in a heterogeneous chip with an
integrated GPU to improve energy efficiency [20] and per-
formance [19]. However, their proposal only configures the
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power states of the CPUs among 4 possible preset values,
and they rely on the controller to indirectly re-adjust the
frequency of the GPU based on the power state of the CPU
and the thermal coupling of both devices. This previous
work is not applicable to discrete GPUs because they do
not have thermal nor performance coupling effects with the
CPU, as they are in different chips.

2.2.3 Heterogeneous Systems with Multiple GPUs
Tangram [24] proposes to distribute power on a hetero-
geneous system with multiple discrete devices by means
of a hierarchical organization of robust controllers with a
common scalable interface. The authors demonstrate Tan-
gram in a system with 2 CPUs and 1 GPU running a single
CPU-GPU application. This approach requires a significant
amount of long latency communication between the devices
and, as shown in Section 6.3, it uses a Nelder-Mead search
algorithm that suffers from long search periods and tends
to determine unbalanced power distributions in some mul-
tiprogrammed workloads. APS works for mixed CPU-GPU
applications, it uses a fast algorithm that scales to multiple
devices, and can be easily implemented in existing large-
scale systems without hardware modifications.

Market solutions have also been proposed to distribute
power in heterogeneous systems [25], although they have
never been deeply studied in a scenario with multiple dis-
crete accelerators. Like APS, market solutions are algorithms
that solve dynamic optimization problems, and they apply
allocations for forward-facing needs based on rear-facing
data. One of the key aspects of market solutions is the
bidding mechanism. Market solutions that have true bids
and support a Walrasian Equilibrium are provably efficient
but, when the bids are based on heuristics, market solutions
can be less effective. Unfortunately, bidding mechanisms for
distributing power in heterogeneous systems with multiple
accelerators have never been studied in the literature. In
Section 6.3 we show that APS outperforms a market solution
that uses heuristic bids based on the TDP of the devices.

3 MOTIVATION

To highlight the challenges of distributing power consump-
tion under a power cap, we run a CPU-bound workload
and a GPU-bound workload on an OpenPOWER system
with 2 CPUs and 4 GPUs. The CPU-bound workload is
composed of a DAXPY kernel in the CPUs and a Speckle
Reducing Anisotropic Diffusion (SRAD) kernel [36] in the
GPUs. The GPU-bound workload is Tensorflow [37] training
an Inception v3 neural network, which uses the GPUs for
the main computation and the CPUs for the data transfers,
updating the weights, and offloading work to the GPUs.

Figure 1 compares the default power distribution of the
OpenPOWER architecture (Default1), the three static power
distribution techniques explained in Section 2.1 (Fairness,
CPUprio, and GPUprio), and APS in a system with a power
cap of 800W and different numbers of GPUs used. The
y-axis shows the weighted speedup with respect to the

1There is no public information on the default behavior of the Open-
POWER architecture. Based on the experimental results, the default
behavior sets very conservative power budgets to all the devices.
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Fig. 1: Execution of DAXPY in the CPUs and SRAD in the
GPUs (left), and Tensorflow training an Inception v3 neural
network (right).

Fairness technique and same number of GPUs, and the x-
axis shows the average power consumption of the main
computation phase normalized to the system power cap of
800W.

The left plot in Figure 1 shows the results for the CPU-
bound workload running a DAXPY kernel in the CPUs and
a SRAD kernel in the GPUs. The default power distribution
degrades the performance with respect to Fairness because
it drastically reduces the frequency of the CPUs. CPUprio
significantly improves the weighted speedup with respect
to Fairness by 16.5%, 16.7%, and 12.0% for 1, 2, and 4 GPUs,
respectively. Reducing the power assigned to the GPUs
does not degrade the performance of SRAD, while the extra
power in the CPUs boosts the performance of DAXPY.

Finally, APS improves the weighted speedup with re-
spect to CPUprio by 6.3%, 4.8%, and, 3.8% for 1, 2, and 4
GPUs, respectively. APS shifts power to the GPUs when
the CPUs enter an idle state, boosting GPU applications
and improving the overall performance. Also, APS reduces
the average power consumption with respect to CPUprio
(between 2.8% and 5.1%) because it lowers the frequency of
the GPUs when they are in a low utilization phase.

The right chart in Figure 1 shows the results for the GPU-
bound workload running Tensorflow. CPUprio degrades
performance up to 34.6% with respect to Fairness because
the computation in the GPUs is drastically slowed down,
affecting the overall performance even if the data transfers
to the GPUs and the weight updates in the CPUs are done
at the maximum possible performance. The default power
distribution lowers the frequency of the GPUs more than
Fairness but not as much as CPUprio, resulting in a slow-
down of 15.0%. In contrast, GPUprio achieves speedups of
up to 24.7% (with 1 GPU) by accelerating the computation
phase in the GPUs.

APS achieves the best performance for this workload
by dynamically shifting power between the CPUs and the
GPUs. In the phases that perform data transfers and weights
update, APS shifts power to the CPUs while, in the compute
phases, the power is shifted to the GPUs. As a result, APS
improves the weighted speedup with respect to GPUprio by
17.0%, 10.2%, and a 3.9% for 1, 2, and 4 GPUs, respectively.

In conclusion, APS outperforms static techniques due to
a better utilization of the available power. Static distribu-
tions cannot respond to the changing power requirements
of heterogeneous applications that use different devices
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Fig. 2: Overview of a system using APS.

in program phases. Thus, an intelligent dynamic power
distribution specially targeted to heterogeneous systems
with multiple discrete accelerators is needed to maximize
the system power-performance efficiency. To this end, APS
provides a hardware/software power distribution mecha-
nism [12], [38], [39] that carefully balances efficiency and
fairness by leveraging dynamic load information, increasing
the fidelity of the power distributions [40]. Thanks to these
properties, APS outperforms other dynamic techniques such
as Tangram [24] and market-based allocation [25]

4 ADAPTIVE POWER SHIFTING FOR
MULTI-ACCELERATOR HETEROGENEOUS SYSTEMS

APS maximizes the performance of power-constrained het-
erogeneous systems by shifting power among devices based
on their utilization. Devices with high power budgets and
low utilization cannot fully use their power budget, thus
APS shifts power to devices with a higher utilization.

4.1 Overview
Figure 2 shows a system using APS. APS is independent of
the underlying devices and of the type of workload, which
can be composed of any number of applications using any
combination of devices during their execution.

APS constantly monitors the power consumption and
utilization of all the devices in the Monitoring Device Activity
and Power phase ( I in Figure 2). These readings are done
through the standard interfaces of each device. As explained
in Section 5, in our setup we use perf for the CPU utilization,
in-band OCC readings for the CPU power consumption,
and NVML for the utilization and the power consumption
of the GPUs. After gathering multiple samples of the power
consumption and utilization, the algorithm triggers a Power
Distribution phase to distribute the available power among
the devices based on their utilization ( II in Figure 2). If
the total power consumption surpasses the power cap, APS
goes to a Force Power Cap phase to meet the power cap
as soon as possible ( III in Figure 2). The power cap is
an input to APS set by the administrator or higher-level
power manager (e.g. rack or cluster level). If no power cap is
specified, it is set to the node Thermal Design Power (TDP).

The frequency-power (freq power) tables are key ele-
ments of the design of APS ( IV in Figure 2). APS uses a
pre-generated freq power table for every device type in the
system. The freq power table of each device contains the
maximum observed power consumption for all the frequen-
cies, and is generated offline by running a stressmark. In
our system we use as stressmarks a DAXPY for the CPUs
and a DGEMM for the GPUs. With the freq power tables
APS can quickly set a frequency level that honors the power

1 avgSamples = N
2 numSamples = 0
3 while True do :
4 T o t a l U t i l = 0 . 0
5 TotalPower = 0 . 0
6 for a l l devices in the system :
7 f r e q [ device ] ← read device frequency
8 u t i l [ device ] ← read device u t i l i z a t i o n
9 power [ device ] ← read device power

10 T o t a l U t i l + = u t i l [ device ]
11 TotalPower + = power [ device ]
12 ++numSamples
13 i f numSamples == ( avgSamples−1) :
14 PowerDistr ibut ion ( freq , u t i l , power , T o t a l U t i l )
15 numSamples = 0
16 e l s e i f TotalPower > PowerCap :
17 ForcePowerCap ( freq , power , TotalPower ) ;

Listing 1: Algorithm of the monitoring phase.

budget assigned to a device and avoid iterative searches
for a budget compliant frequency. These freq power tables
are stored in software, but they could be implemented in
hardware since they are small (one entry per DVFS level).

Note that the design of APS is open to using other hard-
ware knobs other than DVFS to adjust the power budgets
of the devices. The only requirement to use other hardware
knobs is to create a proxy that correlates the configuration
values of a knob with the power consumption of the device
under that configuration, similarly to the freq power tables.
To combine multiple knobs [41], APS would require a table
that contains every combination of the values of the knobs
and their power, as well as a mechanism that decides the
most convenient configuration when the same power can
be achieved with different combinations of the knobs. This
scenario with multiple knobs is out of the scope of this work.

APS does not require any modifications in the source
code of the applications and it does not instrument the
offloading of the GPU kernels nor any application-level
interaction between the CPUs and GPUs. Instead, the inter-
action between the devices is modeled after their utilization
and power consumption, which is measured at system level.

4.2 APS Phases
APS relies on 3 phases, as shown in Figure 2: I monitor the
system, II distribute the available power, and III force the
power cap when the total system power exceeds it.

4.2.1 Monitoring Device Activity and Power
The monitoring phase is responsible of monitoring the
system status and triggering the Power Distribution and
Force Power Cap phases. The system status includes power
consumption and utilization of all the devices, which is
computed as the percentage of cycles that a device has
been executing a process during the sampling period. The
sampling period in our experimental setup is 200ms, as
discussed in Section 5.

The monitoring phase iterates indefinitely over the al-
gorithm shown in Listing 1. After the initialization, the
algorithm gathers the current frequency, the utilization and
the power consumption of all the devices (lines 7 to 9 in
Listing 1). The frequencies, the utilization and the power
consumption of the devices are stored in three vectors,
freq, util and power, which contain one element per
device. In addition, the accumulated utility and power
consumption of all the devices is calculated (lines 10 and
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11) on TotalUtil and CurrentPower, respectively. When
a number of samples has been taken (5 in our setup), the
monitoring algorithm triggers the Power Distribution phase
(lines 13 to 15). When the total system power exceeds the
power cap, the monitoring algorithm triggers the Force
Power Cap phase (lines 16 and 17) to reduce the power
budget of every device so that the power cap is respected.

4.2.2 Power Distribution
The Power Distribution phase is responsible of setting the
power budgets of all the devices in the system according to
their utilization. The algorithm that implements this phase
is shown in Listing 2. The input to the algorithm is the data
gathered by the monitoring algorithm and the total system
power cap (PowerCap).

The Power Distribution algorithm starts by computing
the relative utilization RelativeUtil of every device with
respect to the total utilization of the system (lines 2 and
3). To do so, it divides the utilization of each device by
the accumulated utilizations of all the devices TotalUtil. For
instance, if a system with 6 devices has a TotalUtil of 400%
and one of the devices has an utilization of 80%, its relative
utilization is 0.8/4.0 = 0.2. Then, the algorithm enters a
loop that iterates until there is no power headroom. To
control this condition, the PowerHeadroom is the difference
between the total system power cap and the sum of the
power consumption of all the devices in the system, and the
minPowerStep is the minimum possible increase in power
consumption caused by the minimum possible increase of
the frequency of any of the devices of the system. The
minPowerStep avoids re-triggering the outer loop constantly.
In our setup minPowerStep is 5 Watts, corresponding to the
minimum possible increase of 70 Hz in the CPU frequency.
Thus, when the PowerHeadroom is lower than 5 Watts, it is
impossible to assign the PowerHeadroom to any device and
the Power Distribution phase finishes.

The outermost loop starts by setting the CurrentPower to
zero (line 5), which is a variable that is going to accumulate
the power consumed by all the devices running at a certain
frequency. Then, the algorithm checks if all the devices
are running at their maximum frequencies (lines 6 and 7).
If all the devices are already running at their maximum
frequencies, the Power Distribution phase finishes (line 8).
Otherwise, the innermost loop iterates over all the devices
(line 9). For each device, its TargetPower (line 10) is calculated
as RelativeUtil[device] × PowerCap. The TargetPower of
a device represents the maximum power the device can
consume, based on the relative utility of the device in the
system and the power cap. For instance, for a power cap
of 1000W, a device with a relative utilization of 20% will
have a TargetPower of 0.2 × 1000W = 200W . Note that,
if two different devices have the same relative utilization,
they will get the same portion of the power cap as Target-
Power. Then the StressmarkPower of the device is obtained
by consulting the freq power table (line 11). The Stress-
markPower represents the power consumption of the device
running the stressmark at the current frequency. Then the
algorithm calculates the RatioDevice of the device (line 12)
as StressmarkPower/power[device]. The RatioDevice rep-
resents how much power an application consumes running
at a certain frequency compared to the stressmark running

1 Require : f r e q [ ] , u t i l [ ] , power [ ] , T o t a l U t i l , PowerCap
2 for a l l devices in the system :
3 R e l a t i v e U t i l [ device ] = u t i l [ device ] / T o t a l U t i l
4 while PowerHeadroom > 0 and PowerHeadroom > minPowerStep :
5 CurrentPower = 0
6 MaxFreqDevices = devices with f r e q == maxFreq
7 N = Number of devices in MaxFreqDevices
8 i f N == Number of devices in the system : break
9 for a l l devices in the system :

10 TargetPower = R e l a t i v e U t i l [ device ] × PowerCap
11 StressmarkPower = freq power table [ f r e q [ device ] ]
12 RatioDevice = stressmarkPower / power [ device ]
13 PowerBudget = TargetPower × RatioDevice
14 f r e q [ device ] = freq power table [ PowerBudget ]
15 CurrentPower = CurrentPower + TargetPower
16 PowerHeadroom = PowerCap − CurrentPower
17 apply frequencies ( )

Listing 2: Algorithm of the Power Distribution phase.

at the same frequency. This is done because the freq power
tables store frequency and power values generated with
stressmarks that are CPU and GPU intensive, but most
workloads have different frequency-power characteristics
than the stressmark. For instance, if an IO-intensive applica-
tion has a power consumption of 75W running at a certain
frequency and the stressmark consumes 150W running at
the same frequency, the RatioDevice is 150W/75W = 2.
The goal of the RatioDevice is to scale up the TargetPower
of the device before looking for its target frequency in
the freq power table, so the optimal frequency for that
device is found in a single step, honoring the power budget
and minimizing the power headroom without the need to
iteratively refine the power budget. To do so, the algorithm
calculates the PowerBudget as TargetPower×RatioDevice
(line 13). This PowerBudget is searched in the freq power
table for that device type (line 14), and APS selects the
highest frequency that satisfies the PowerBudget. Finally, the
TargetPower of the device is accumulated in the CurrentPower
(line 15). Once the innermost loop has calculated the fre-
quencies of all the devices, the PowerHeadroom is calculated
as PowerCap− CurrentPower (line 16).

At the end of the algorithm, when all the frequencies
of all the devices have been calculated and there is no
power headroom available, the new frequencies are applied
to all the devices via the DVFS controller (line 17). The new
frequency of a device limits its power consumption to its
calculated power budget until the monitoring phase triggers
again the Power Distribution phase.

Note that this algorithm could be implemented as a re-
inforcement learning problem where agents or devices take
actions by increasing or reducing their running frequencies,
and the reward is based on how much power headroom is
left or what is their individual throughput. The viability of
this approach depends mostly on the trade-offs between the
quality of the decisions and the complexity, which can lead
to large overheads compared to simpler heuristics. We leave
the study of such an approach for future work.

4.2.3 Force Power Cap

This phase forces the power cap when the total power
consumption exceeds it. The goal of this phase is to reduce
the power consumption as soon as possible to minimize the
time over the specified power cap. For this reason, the Force
Power Cap phase quickly reduces the power consumption
equally from all the devices, and APS relies on the next
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Fig. 3: Synthetic example of APS distributing power in a system with 1 CPU and 1 GPU.

1 Require : f r e q [ ] , power [ ] , CurrentPower , PowerCap
2 while CurrentPower > PowerCap :
3 NonMinFreqDevices = devices with f r e q > minFreq
4 N = Number of devices in NonMinFreqDevices
5 i f N == 0 : break
6 PowerToReduce = ( CurrentPower − PowerCap )
7 DevicePowerToReduce = ( PowerToReduce / N)
8 CurrentPower = 0
9 for device in NonMinFreqDevices :

10 PowerBudget = power [ device ] − DevicePowerToReduce
11 f r e q [ device ] = freq power table [ PowerBudget ]
12 CurrentPower + = PowerBudget
13 MinFreqDevices = devices with f r e q == minFreq
14 CurrentPower + = sumPower ( MinFreqDevices )
15 apply frequencies ( )

Listing 3: Algorithm of the Force Power Cap phase.

Power Distribution phase to optimize the power budgets
of the devices under the new power cap. The algorithm that
implements the Force Power Cap phase is shown in List-
ing 3. Note that this phase can be triggered at any moment
of the execution, as the power cap can be exceeded at any
time due to applications entering a phase with higher power
consumption, responses to thermal or energetic emergen-
cies, etc. Therefore, distributing the power in this phase can
lead to measurements not representative of the workloads
running in the devices (the Power Distribution phase mea-
sures 5 samples before distributing the power).

The Force Power Cap algorithm reduces the power bud-
get of the devices that are not running at their minimum
frequency until the sum of the power of all devices is
less than or equal to the power cap. First, the algorithm
selects the devices that are not running at their minimum
frequency (lines 3 to 4 in Listing 3) and, if all of the
devices are running at their minimum frequencies, the
algorithm finishes (line 5). Otherwise, APS calculates the
amount of power that needs to be reduced, PowerToReduce,
as CurrentPower−PowerCap (line 6). The PowerToReduce
is equally divided among these devices by calculating the
DevicePowerToReduce in (line 7). Then, the CurrentPower is
set to zero (line 8), and the algorithm enters a loop that
reduces the power of all the devices that are not running at
their minimum frequency (line 9).

For each device that is not running at its minimum
frequency, its new power budget (PowerBudget in line 10)
is computed by subtracting the DevicePowerToReduce from
the current power consumption of the device. Then, the
device is assigned a new frequency by looking up its new
power budget in the freq power table of that device type
and selecting the highest frequency that satisfies it (line 11),
and the PowerBudget of the device is accumulated on the
CurrentPower (line 12), which controls the total power of the
system. After the innermost loop, the power consumption
of the devices that are running at their minimum frequency
is also accumulated on CurrentPower (lines 13 and 14).

Finally, the frequencies assigned to all the devices are

applied (line 15). The new frequencies of all devices ensure
that the total power consumption honors the power cap or
that all the devices are running at their lowest frequency. If
the power behavior changes and exceeds the power cap, the
monitoring phase is in charge of triggering this phase again.

APS can use this algorithm thanks to the information of
the freq power tables. Previous work [24] need to lower
the frequencies of all devices to their minimum possible
frequency level since their mechanism is not aware of the
power consumption of every frequency level.

4.3 Algorithm Walkthrough for a CPU+GPU
Figure 3 shows an example of APS managing a system with
1 CPU and 1 GPU (red and blue lines, respectively). The
total power consumption is represented by the sum of both
devices (black line). Initially ( 1 ), each device is running a
workload and no power cap is specified. At 2 , a power cap
of 400W is introduced. APS invokes the Force Power Cap
phase to reduce the power consumption of each device. As
a result, the CPU and GPU are set to a lower frequency and
their power consumption decreases.

The applications running in the CPU and the GPU enter
a phase with a lower power consumption at 3 . At 4 APS
invokes the Power Distribution phase to set the power bud-
get of the CPU and GPU based on their utilization from the
last 5 samples. Since the total system power consumption
is lower than the power cap, APS has power headroom to
increase the frequencies of the CPU and GPU. The right part
of Figure 3 shows how this process is done with an example.

At 4 , the total system power consumption is 330W,
and the CPU and GPU consume 150W and 180W with an
utilization of 40% and 60%, respectively. Thus, APS has a
power headroom of 70W to boost the performance. The
first step is to calculate the Target power, that represents the
maximum power budget for a device within a power cap.
In this example, the target power for the CPU and GPU is
160W and 240W, respectively.

Next, APS calculates the power budget of every device. To
do so, APS relies on a freq power table that is generated
with a stressmark for that device. Therefore, if an applica-
tion has a lower power consumption than the stressmark at
a given frequency and APS applies this same frequency, the
device will not fully use its power budget. In the example,
the power consumption of the CPU stressmark running at
2.68GHz is 200W, and the GPU running the stressmark at
1365MHz consumes 200W. Consequently, the RatioDevice
for the CPU is 200/150 = 1.3, and for the GPU the RatioDe-
vice is 200/180 = 1.1.

In the next step APS looks for the highest frequency
that honors the power budget in the freq power table of each
device. The power values searched in the freq power tables
of the CPU and the GPU are 208W and 264W, respectively.
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Fig. 4: Average power consumption and speedup when run-
ning a stressmark in a CPU (left) and GPU (right). CPU and
GPU stressmarks are DAXPY and DGEMM, respectively.

Note that these power values are higher than the Target
power of each device, but neither the CPU nor the GPU
will consume that much power because the workloads they
are executing have a lower power consumption than the
stressmarks, as reflected by a RatioDevice higher than 1.

Finally, after applying the new frequencies in the CPU
and the GPU, the power consumption of both devices is the
same as their Target power (note that it could be a bit lower),
and the available power is used much more efficiently than
in the initial state at 4 . After the Power Distribution phase,
the power consumption of the devices does not change.
Therefore, from 5 until the end of the execution, APS keeps
monitoring the system but does not change the frequencies.

5 EXPERIMENTAL SETUP

We evaluate APS on an OpenPOWER system (PowerNV
8335-GTH) with 2 CPUs and 4 GPUs distributed in 2 sockets.
Each socket has an IBM POWER9 processor [42] that runs
by default at 3.00GHz and 2 NVIDIA Volta V100 GPUs [31]
that run by default at 1.53GHz.

When all devices are running at their higest frequency,
the system can have a power consumption of up to 1500W.
Therefore, we use power caps that range between 66%
and 40% of the peak power consumption, which represent
multiple realistic scenarios within a system.

We implement APS as a process in the system. This
process uses a single thread that always runs on core 0.
The process measures execution time and utilization with
perf [43] and does in-band power consumption readings
from Linux to the OCC [22] for the CPUs and with the
NVIDIA Management Library (NVML) [44] for the GPUs.
The APS sampling rate is limited by the overheads of the
measurement tools. Reading the power consumption and
utilization of the CPUs and the GPUs takes on average 50ms
and 105ms, respectively, and can be affected by the load of
the system. Therefore, we set a sampling time of 200ms,
which allows APS to recognize irregular behaviors.

Note that NVML measures the utilization of the GPU
as a whole, but it does not allow to measure the utilization
of each Streaming Multiprocessor (SM) of the GPU individ-
ually. Other tools such as libcupti or dcgmi allow reading
per-SM utilization, but doing it in APS would introduce
larger overheads and result in larger sampling times. APS
could suffer from inaccurate utilization readings when GPU
applications present a very unbalanced utilization across
SMs. In our setup the GPU benchmarks use all the SMs, so
this situation never happens. Similarly, the CPU utilization

TABLE 4: List of CPU (left) and GPU (right) benchmarks.

Name Suite Power Name Suite Power

DAXPY - High Tensorflow - High

BT NAS High DGEMM - High

EP NAS High Particlefilter Rodinia High

FT NAS High Heartwall Rodinia Low

MG NAS High Kmeans Rodinia Low

UA NAS High Myocyte Rodinia Low

CG NAS Low Srad (v1) Rodinia Low

LU NAS Low Srad (v2) Rodinia Low

SP NAS Low Quicksilver CORAL Low

Kripke CORAL Low QMCPack CORAL Low

graph500 CORAL Low Lulesh CORAL Low

does not consider busy waiting synchronization mecha-
nisms, which are not used in our CPU benchmarks.

5.1 DVFS Capabilities
The CPUs in our system have 43 frequency levels (from
3.00GHz to 2.30GHz). APS adjusts the frequency of each
CPU separately. When the frequency of a CPU is adjusted,
all the cores of that CPU adjust their frequencies accordingly.
APS does not control the frequencies of the cores individu-
ally. Lowering the CPU frequency has a linear impact on
power and performance for a DAXPY stressmark as shown
in Figure 4 (left). The GPUs can be set to run from 1.53GHz
to 135MHz through the NVML, and the frequency of each
GPU is set separately. We only use frequencies higher
than 500MHz, since lower frequencies have a significant
negative impact on performance, as shown in Figure 4
(right). To ensure that the physical power management of
the system does not intervene in our experiments, we set an
unrealistically high power cap at the hardware level that is
never reached. Note that the single-threaded process that
implements APS is affected by the changes CPU to the
frequency, but we do not observe any performance impli-
cations because the execution time of the APS algorithm is
very short.

5.2 Benchmarks
Table 4 shows the CPU and the GPU benchmarks used
in our evaluation in the left and right columns, respec-
tively, and their average power consumption (high/low).
The benchmarks belong to the NPB [45], CORAL [46], and
Rodinia [36] suites. We also train an Inception v3 neural net-
work [47] with the ImageNet data set [48] in Tensorflow [37],
and use a DAXPY kernel for the CPU, and a DGEMM kernel
for the GPU. The execution time of all benchmarks is 200s
to 375s running in isolation with no power cap.

5.3 Baselines
We compare APS against 3 static power distributions (Fair-
ness, CPUprio, GPUprio) and a profile-based approach. We
do not include the default OCC of the OpenPOWER system
because, as seen in Section 3, it is very conservative and it is
outperformed by all the other approaches.

For the Fairness, CPUprio, and GPUprio power distribu-
tions we set the power budgets of all the devices as specified
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in Table 3. The power budget of the devices is constantly
monitored and, if needed, their frequencies are corrected to
honor their power budgets. If a device has available power
headroom we increase its running frequency.

The profile-based static approach (Static Prof) finds the
best power distribution for mixed workloads using offline
profiling of the workloads and computing a Mixed-Integer
Linear Programming (MILP) model. We measure offline the
maximum power consumption and execution time of every
benchmark individually for all the frequencies in our sys-
tem, and then we apply the MILP model shown in Model 1
to select the frequencies of the devices that minimize the
overall slowdown of all the benchmarks. At the beginning
of the execution, Static Prof sets the frequencies of every
device to the frequencies obtained by the model. Note that
this model could achieve better results if it used percentiles
instead of the maximum power consumption and execution
time of the benchmarks, or if it used more features.

minimize
∑

Idf × Slowdowndf

subject to
∑6

i=0 Idf = 1∑
Idf × Powerdf ≤ System power cap

Idf =

{
1 if device d runs at frequency f

0 Otherwise

}

Model 1: Mixed-Integer Linear Programming to set the fre-
quency of the devices when using Static Prof. Powerdf is the
maximum power measured in an offline profiling when the
device d runs at frequency f. Slowdowndf is the slowdown
when the device d runs at frequency f with respect to the
device d running at its highest frequency.

6 EVALUATION

This section evaluates APS in a system running a single het-
erogeneous application (Section 6.1) and multiprogrammed
workloads (Section 6.2). Finally, Section 6.3 compares APS
with multiple state-of-the-art techniques.

6.1 Single CPU-GPU Applications
We evaluate APS with Tensorflow training an Inception v3
neural network using all the CPUs and GPUs in the system.
The GPUs perform the main computation phase, but the
CPU performance is relevant for (1) updating the weights of
the neural network, (2) transferring data between CPUs and
GPUs, and (3) doing I/O operations while GPUs are idle.

We experiment with Fairness, CPUprio, GPUprio, Static
Prof, and APS with power caps of 1000, 900, 800, 700, and
600W. Results are shown in Figure 5. The y-axis shows the
speedup with respect to Fairness and different power caps
are represented in the x-axis. When no power cap is applied,
this experiment consumes up to 1660W (1090W on average).
Fairness degrades performance with respect to no power
cap by 14.4%, 18.3%, 25.5%, 33.4%, and 48.1% for power
caps of 1000, 900, 800, 700, and 600W, respectively.

Figure 6 shows a timeline of the power consumed by
the CPUs and the GPUs running Tensorflow under Fair-
ness with a power cap of 900W. The timeline shows a
stable power consumption by the CPUs of between 59W
and 75W in the whole execution. In contrast, the power
consumption of the GPUs varies widely over time, with
high and low power spikes of 50W to 150W. These power
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Fig. 5: Speedup of Tensorflow training an Inception v3
network with different power distributions and power caps.
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Fig. 6: Power consumption over time of the all the devices
running Tensorflow under a Fairness power distribution.

spikes are caused by the characteristics of the workload in
different program phases, since the power budgets and the
frequencies of the GPUs are constant under Fairness. The
average duration of the GPU phases with low and high
power consumption are 404ms and 470ms, respectively.

Figure 5 shows that APS and GPUprio outperform Fair-
ness. This workload relies on GPUs for the main com-
putation, so the performance increases when the power
distribution favors the GPUs. APS can respond to this
behavior dynamically based on the power consumption and
the utilization of the devices. Note that, the lower the power
cap, the higher the speedup for APS and GPUprio. This
happens because, as shown in Figure 4 in the GPU power-
performance curve, the power consumption drops faster
than the performance. Thus, the performance improvements
of APS and GPUprio with respect to Fairness and CPUprio
are higher as we lower the power cap. With a power cap
of 600W, APS and GPUprio outperform Fairness by 15.9%
and 11.5%, respectively. These speedups come from using
higher frequencies for the GPUs, and the extra 4.4% of APS
is due to running the CPU phases at a higher frequency.
APS and GPUprio run the GPUs at a higher frequency than
Fairness and APS further improves performance by running
the CPUs at a higher frequency for the data transfers, the
weight updates, and the I/O phases. Notice that the data
transfers and the execution of the GPU kernels are over-
lapped, so there are no obvious program phases during the
execution. However, the power consumption of the GPUs
varies during the execution (as shown in Figure 6), which is
exploited by APS to efficiently distribute power.
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CPUprio assigns power budgets favoring the CPUs.
With a power cap of 700W, Fairness runs GPUs at 900MHz
while CPUprio sets their frequency to 643MHz. This causes
large performance differences because the GPUs power-
performance trade-off is much better at 900MHz than at
643MHz, as shown in Figure 4. For high and low power caps
the performance differences are smaller. For 600W, Fairness
sets a very low power budget for the GPUs, which results in
similar frequencies to the ones used by CPUprio. For 1000W
and 900W there is enough power for CPUprio to set a high
GPU frequency similar than Fairness.

Static Prof achieves a performance improvement with
respect to Fairness of 5.2%, 4.3%, and 7.3% for power caps
of 1000W, 900W, and 800W, respectively. For lower power
caps of 700W and 600W, Static Prof has a performance
degradation with respect to Fairness of 23.4% and 2.9%,
respectively. When setting a power cap of 700W, Static Prof
lowers the frequency of the GPUs to 690MHz, much less
than the 900MHz set by Fairness, so the performance is
greatly degraded. For 600W, the frequency of the GPUs is
similar in Static Prof and Fairness, 645MHz and 723MHz,
respectively.

In terms of power consumption, GPUprio, Static Prof,
and APS have a similar power consumption for a power cap
of 1000W. Yet, as we lower the power cap to 600W, GPUprio
consumes similar power than APS without providing per-
formance benefits due to the CPUs running at a lower
frequency, while Static Prof fails to use the available power
headroom due to the high power phases of Tensorflow.

Figure 7 shows the power consumption of the exper-
iments with power caps of 1000W and 600W. The figure
shows power consumption in the y-axis for all the static
and our dynamic power distributions in the x-axis. The
boxes represent from the 75th to the 25th percentile, the
band inside the boxes represent the median power, and the
whiskers represent from the 95th to the 5th percentile. It can
be observed that, with a power cap of 1000W, GPUprio,
Static Prof, and APS have a similar power consumption. Yet,
as we lower the power cap to 600W, GPUprio consumes
similar power than APS without providing performance
benefits due to the CPUs running at a lower frequency, while
Static Prof fails to use the available power headroom due to
the high power phases of Tensorflow.

6.2 Mixed Workloads (CPU-GPU Applications)
This section evaluates APS in a power capped system
running mixed workloads composed of CPU and GPU

programs. The mixed workloads are composed of 2 CPU
benchmarks and 4 GPU benchmarks randomly selected
from Table 4. To refer to these mixed workloads, we use
the following nomencalture:
WorkloadNumberCPUHigh−CPULow,GPUHigh−GPULow

where CPUHigh and GPUHigh are the number of high-
power consumption benchmarks (for CPU and GPU, respec-
tively) and CPULow and GPULow are the number of low-
power consumption benchmarks (for CPU and GPU, respec-
tively). The devices start running their assigned benchmarks
at the same time and benchmarks run until completion.

Figure 8 reports the weighted speedup for different
workloads under 3 power caps (1000, 800, and 600W) using
the Fairness, CPUprio, GPUprio, Static Prof, and APS power
distributions. The x-axis shows 2 random workloads for
5 scenarios (CPUHigh − CPULow, GPUHigh − GPULow):
(1) 1-1, 2-2; (2) 0-2, 3-1; (3) 2-0,1-3; (4) 1-1,3-1; (5) 1-1, 1-
3. Figure 9 shows the average power consumption and
power headroom for the mixed workloads with respect to
the power cap. When no power cap is applied, these mixed
workloads have a power consumption of up to 1614W
(867.5W on average). On average, Fairness degrades per-
formance with respect no power cap by 10.1%, 19.6%, and
30.1% for power caps of 1000, 800, and 600W, respectively.

Figure 8 shows that APS achieves the best performance
across all the workloads and power caps, achieving average
weighted speedups over Fairness of 8.8%, 13.9%, and 13.6%
for power caps of 1000, 800, and 600W, respectively. The best
power distribution heavily depends on the characteristics
of each workload, so the static approaches fail at improv-
ing performance for all workloads, while APS consistently
achieves speedups in all cases by intelligently shifting the
power to the devices that better utilize it. For this reason,
Figure 9 shows that APS increases the average power con-
sumption over Fairness by 6.8%, 5.9%, and 6.3% for power
caps of 1000, 800, and 600W, respectively, while respecting
the power cap. Notice that the available power headroom
also depends on the workload power consumption behav-
ior. On average, the time over the power cap for APS is
1.2%, 3.1%, 4.9% for power caps of 1000, 800, and 600W,
respectively.

CPUprio outperforms Fairness in several workloads. In
particular, workloads 4, 5, 8 and 9 are running 3 low-power
GPU benchmarks and at least 1 high-power CPU bench-
mark, so shifting power to CPUs improves performance.
The opposite situation happens in workloads 1, 6, and 7,
so the performance of CPUprio is worse than Fairness. As
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for different power distributions under different power caps
when running different mixed workloads.

seen in Figure 9, CPUprio is the approach that uses the least
power, with power headrooms of 36.6%, 36.5%, and 29.6%
for power caps of 1000, 800, and 600W, respectively.

GPUprio achieves similar or worse performance than
Fairness with a power cap of 1000W. This is because CPUs
run at the lowest frequency and the GPUs at the highest
frequency, and the slowdowns in the CPU benchmarks
outweigh the speedups in the GPU benchmarks. With lower
power caps, GPUprio achieves better performance than
Fairness due to the power-performance curve of GPUs
(shown in Figure 4), specially in workloads where 3 GPUs
are running high-power benchmarks (workloads 1, 3, 6,
and 7). Consequently, the average power consumption of
GPUprio over Fairness increases as the power decreases, as
shown in Figure 9.

Static Prof achieves average performance improvements
of 4.3%, 8.8%, and 2.1% with respect to Fairness for power
caps of 1000W, 800W, and 600W. For a power cap of 600W,
Static Prof degrades performance for workloads 3, 6, and 7
due to GPUs running high-power benchmarks. In higher
power caps, this behavior is less noticeable due to the
power-performance curve of the GPUs (as shown in Fig-
ure 4). Static Prof is a conservative approach in workloads
with changing power behaviors, which can present a large
power headroom in some application phases. As we can
observe in Figure 9, Static Prof uses 3.9% less power on
average than Fairness for a power cap of 600W.

6.3 Comparison with State-of-the-Art

This section compares APS with two state-of-the-art tech-
niques: a market-based solution [25] and Tangram [24].

We implement a market solution based on [6], which
is aimed to distribute multiple resources (e.g. cache, off-
chip bandwidth, and power) among multiple CPUs. We
adapt the algorithm to distribute power between CPUs and
GPUs. In our market solution (Market), agents (e.g. CPUs
and GPUs) bid for power based on their expected power
utility. Power utility is modeled based on the fact that the
length of the compute phase tends to scale linearly with
the processor frequency. Agents measure their compute and
memory phases from the last interval to compute their
power utility. Then, a centralized resource arbiter collects
bids, adjusts the price of the resource based on the bids and
the power availability, and publishes the new price. Agents
bid again based on the new price and their utility. We set the
budget for bidding for the agents as their maximum TDP. In
our setup, GPUs have a higher TDP and higher budget for
bidding than CPUs. If the power surpasses the power cap,

all the devices reduce their power budget equally. Note that
this implementation, as proposed in the original paper [6],
does not take advantage of real-time power measurements,
limiting the ability of the bidders to bid accurately. Using
real-time measurements in Market is left for future work.

We also compare APS with Tangram [24], which man-
ages the power budgets of the devices in heterogeneous sys-
tems to minimize the overall Energy-Delay Product (EDP).
Tangram has two operating modes: (1) preconfiguration
mode and (2) enhancement mode. The preconfiguration
mode is used when the computation only uses one device
type, and it applies a static power distribution for all the
devices. We extend the static power distributions to fit
our larger-scale experimental framework. The enhancement
mode is used when all the devices in the system are active.
This mode applies a Nelder-Mead search to find the power
distribution that minimizes EDP. The Nelder-Mead search
is leveraged by throughput, which is read by collecting per-
formance counters in the CPUs and the GPUs. As described
in [24], if the power goes above the power limit, the devices
are set to their lowest frequencies and the Nelder-Mead
search is restarted. Also, there is 5% probability to restart
the search. Since the power is already limited to a given
power cap, we set Tangram to maximize overall throughput.
Note that, although Tangram is proposed as a hardware
technique, in the original manuscript [24] it is evaluated
using a software implementation. For our comparison with
APS, we use a software implementation of Tangram that has
a single Nelder-Mead search.

Note that systems under APS, Tangram and Market (as
well as under other state-of-the-art solutions) can surpass
the power cap. This happens if, at the moment the power
consumption is stable and maximized under a power cap,
a device enters a program phase with a higher power con-
sumption, or if the power cap is decreased due to external
circumstances such as power or thermal emergencies. For
this reason, the three solutions include a control mechanism
that ensures the power cap is always respected.

Figure 10 shows the average weighted speedup of
Market and Tangram with respect to APS for the mixed
workloads evaluated in Section 6.2 with power caps of
1000W, 800W and 600W. The whiskers represent the range
of speedups achieved by Market and Tangram in all the
workload mixes.

Results show that, compared to APS, Market presents
average slowdowns of 3.5%, 2.9% and 7.5% for power caps
of 1000W, 800W and 600W, respectively. In addition, the
whiskers show that Market does not improve performance
in any workload mix with any power cap compared to
APS. Market performs worse than APS in the workload
mixes that benefit from assigning more power to the CPUs
(workloads 4 and 5) because, in our implementation where
the agents have a bidding budget of their maximum TDP,
GPUs have a higher bidding budget, so the algorithm is
biased to power distributions that favor GPUs while CPUs
starve for power. As a consequence, we observe large im-
balances in the power budgets of the GPUs and the CPUs,
which end up causing performance inefficiencies in the
CPU-intensive mixed workloads because the speedups in
the GPU workloads are overweighted by the slowdowns
in the CPU workloads. In addition, we also observe that
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Fig. 10: Average weighted speedup of Market and Tangram
with respect to APS for mixed workloads (from Figure 8)
with different power caps. Whiskers represent the range of
speedups achieved in all the workload mixes.

Market introduces performance penalties when GPUs bid
intensively for power (workloads 6 and 7). Since agents
only consider power utility but not the current power con-
sumption of the devices, they bid for power independently
of low or high power phases, which are common in GPU
workloads. This can lead to power distributions that do not
honor the system power cap, forcing an emergency power
reduction in all the devices to lower the consumption below
the power cap. All together, we observe that Market is not
able to correctly balance the power budgets of the CPUs and
the GPUs in some cases. This problem is not caused by the
fundamental idea behind the market approaches in general
nor by the algorithm that makes the decisions. Instead,
the main problem of Market is the implementation of the
bidding capacities of the devices. In our implementation the
bidding capacity of a device is its maximum TDP, so there
is a big disparity in the bidding power of the CPUs and
the GPUs. In general, bids in a market mechanism should
reflect the actual value that the bidding process obtains from
using the resource. Thus, if bids are set heuristically, the
Market algorithm is subject to the vagaries of that heuristic.
The problem of finding an optimal bidding mechanism for
systems with CPUs and GPUs has never been addressed
because Market algorithms have never been studied in this
context. This research direction is left for future work.

Figure 10 also shows that Tangram offers less perfor-
mance than APS, with average slowdowns of 7.2%, 9.5% and
8.5% under power caps of 1000W, 800W and 600W, respec-
tively. As before, all the workloads mixes perform worse
with Tangram than with APS. We observe that the main rea-
son for this performance disparity is that, in some workload
mixes, Tangram suffers from slow reactions to changing
power behaviors. The Nelder-Mead search is a complex
algorithm with a long search phase, which compromises
response time and scalability for a large number of devices.
Therefore, in workload mixes where power consumption
varies considerably along the execution (workloads 4, 6,
7, and 9), the Nelder-Mead search misses opportunities to
boost the overall performance. Another important reason
for the performance differences are the unbalanced power
distributions that Tangram uses for some workload mixes
(workloads 0, 1, 2, 3, and 8), which are caused by the
nature of the Nelder-Mead search. The algorithm assigns
more power to the devices with a higher throughput so,
when it assigns more power to the GPU with the highest
throughput, its throughput is repeatedly augmented at ev-
ery iteration of the Nelder-Mead search, while the rest of de-
vices are never assigned more power. In some phases of the

execution we see that this behavior creates big imbalances in
the power budgets of the devices. As a result, an important
speedup is achieved for the single application running on
the GPU with the highest throughput, but the performance
does not change in the rest of applications running in the
other devices. In contrast, APS distributes the power in a
much more balanced way, so the speedup achieved by the
application running on the GPU with the highest through-
put is not as large as in Tangram, but it is compensated by
the speedups obtained in the rest of applications, resulting
in an average weighted speedup larger than Tangram.

On average, Tangram performs slightly worse than Mar-
ket for all the power caps. However, in many workload
mixes they achieve very similar performance, as shown
by the whiskers. In some workload mixes Tangram is not
as effective as Market because of the slower Nelder-Mead
search. In other cases (workloads 4 and 9) the reason is the
imbalance between the power budgets of the CPUs and
the GPUs, which happens in both Market and Tangram,
but it is more extreme in Tangram. Tangram assigns as
much power budget as possible to the GPUs with maximum
throughput and does not increase the power budget of the
CPUs. In Market the GPUs have a higher bidding budget
than the CPUs, so a big portion of the power is shifted
to the GPUs, but the CPUs still get a small portion of the
power headroom, so the distribution is not as extremely
unbalanced as in Tangram.

6.4 APS Design Discussion

This section shows the importance of the freq power tables,
the RatioDevice, and the Force Power Cap phase of APS. As
explained in Section 4.1, the freq power table of a device
contains the maximum power consumption for all the fre-
quencies, and is generated offline by running a stressmark.

To demonstrate the benefits of the proposed design,
we compare APS against 4 alternative implementations:
APS-NoScalePower (APS-NSP) does not scale the current
power consumption, so the RatioDevice is always 1. APS-
SpecificBenchmarkTables (APS-SBT) uses a freq power table
for every benchmark instead of a freq power table gener-
ated with a stressmark. The freq power tables are generated
offline by running all the benchmarks on their devices at
every available frequency. APS-NoForcePowerCap-Min (APS-
NFPC-Min) uses a constant RatioDevice of 1 and, when a
power cap is introduced, reduces the frequencies of all the
devices to their minimum. APS-NoForcePowerCap-Max (APS-
NFPC-Max) uses a constant RatioDevice of 1 and, when a
power cap is introduced, it does not change the frequen-
cies of the devices. The last two variants use the Power
Distribution phase to iteratively adjust the frequencies of
the devices until their power consumption is equal to their
power budget and the system power cap is met.

Figure 11 shows the average weighted speedup with
respect to Fairness for the mixed workloads evaluated in
Section 6.2 with a power cap of 800W. Results show that
APS outperforms all the alternative designs except APS-
SBT. Compared to APS, APS-NSP, APS-NFPC-Min and APS-
NFPC-Max present performance losses of 1.5%, 4.6% and
2.2%, respectively. These slowdowns happen because these
alternative implementations do not scale the power of the
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Fig. 11: Average weighted speedup of different APS variants
with respect to Fairness for mixed workloads (from Figure 8)
with a power cap of 800W.

running applications to the one observed with the stress-
mark, so more iterations of the Power Distribution phase are
required to optimally distribute the power. The performance
differences between APS-SBT and APS are below 1% be-
cause the specific freq power tables per benchmark achieve
the same goal as the one generated by the stressmark.
However, generating the freq power tables per benchmark
requires a huge amount of executions to profile all the appli-
cations running on their devices at all the frequencies, which
can be avoided by combining the RatioDevice and a single
freq power table per device generated with a stressmark.
We adopt this approach to gain this simplicity.

7 CONCLUSIONS

Current systems include multiple discrete devices per node.
Unfortunately, power constraints limit the number of de-
vices that can operate simultaneously at their highest fre-
quency. To efficiently distribute the power in such systems,
dynamic power management techniques that consider de-
vice utilization are needed. This work presents APS, a mech-
anism that leverages system utilization to distribute the
available power among multiple discrete devices in power-
constrained multi-accelerator heterogeneous systems. APS
dynamically adjusts the power budget of the devices based
on their utilization, allowing highly-utilized devices to have
a higher power budget than low-utilized devices.

We evaluate APS on an OpenPOWER system with 2
CPUs and 4 GPUs. APS outperforms the Fairness static
power distribution, with speedups of up to 15.9% in single
CPU-GPU applications and weighted speedups of up to
20.5% in multiprogrammed workloads. APS also outper-
forms Tangram and Market for multiprogrammed work-
loads, improving the weighted speedup up to 14.9% and
13.8%, respectively, with a simpler implementation.
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