81 research outputs found

    The ventrolateral hypothalamic area and the parvafox nucleus: Role in the expression of (positive) emotions?

    Get PDF
    The lateral hypothalamus has been long suspected of triggering the expression of positive emotions, because stimulations of its tuberal portion provoke bursts of laughter. Electrophysiological studies in various species have indeed confirmed that the lateral hypothalamus contributes to reward mechanisms. However, only the rudiments of the neural circuit underlying the expression of positive emotions are known. The prefrontal cortex, the lateral hypothalamus, and the periaqueductal gray matter (PAG) are involved in these circuits; so, too, are the brainstem nuclei that control the laryngeal muscles and subserve mimicry, as well as the cardiovascular and respiratory systems. The implicated populations of hypothalamic neurons have not been defined either anatomically or molecularly. One promising candidate is the novel parvafox nucleus, which we recently described, in the murine medial forebrain bundle (mfb), which specifically expresses parvalbumin and Foxb1. With the molecularly defined parvafox nucleus as a centerpiece, the inputs from the prefrontal cortex and the projections to the PAG and brainstem can be studied with precision. By drawing on genetic approaches, it will be possible to manipulate the circuitry selectively with spatial and temporal exactitude and to evaluate the concomitant autonomic changes. These data will serve as a basis for imaging studies in humans using various paradigms to provoke the expression of positive emotions. In conclusion, studies of the hypothalamic parvafox nucleus will reveal whether this entity represents the fulcrum for positive emotions, as is the amygdala for fear and the insula for disgust

    Coaxiality of Foxb1- and parvalbumin-expressing neurons in the lateral hypothalamic PV1-nucleus

    Get PDF
    In the ventrolateral hypothalamus, the PV1-nucleus is defined by its population of parvalbumin-expressing neurons. During embryogenesis, the ventrolateral hypothalamus is colonized also by Foxb1-expressing neurons. In adult Foxb1-EGFP mice, many immunofluorescent neurons were found within the region that is occupied by the PV1-nucleus. They formed a cloud around the axial cord of the parvalbumin-immunopositive cells, which they greatly outnumber (3:1). Only a small proportion of the neurons in the PV1-nucleus co-expressed both parvalbumin and Foxb1. In the light of these findings, a redesignation of this lateral hypothalamic structure as the PV1-Foxb1 nucleus would more accurately reflect its specific biochemical properties

    The Foxb1‐expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits

    Get PDF
    The parvafox nucleus is an elongated structure that is lodged within the ventrolateral hypothalamus and lies along the optic tract. It comprises axially located parvalbumin (Parv)-positive neurons and a peripheral cuff of Foxb1-expressing ones. In the present study, injections of Cre-dependent adenoviral constructs were targeted to the ventrolateral hypothalamus of Foxb1/Cre mice to label specifically and map the efferent connections of the Foxb1-expressing subpopulation of neurons of the parvafox nucleus. These neurons project more widely than do the Parv-positive ones and implicate a part of the axons known to emanate from the lateral hypothalamus. High labeling densities were found in the dorsolateral and the upper lateral portion of the periaqueductal gray (PAG), the Su3 and PV2 nuclei of the ventrolateral PAG, the cuneiform nucleus, the mesencephalic reticular formation, and the superior colliculus. Intermediate densities of terminals were encountered in the septum, bed nucleus of the stria terminalis, substantia innominata, various thalamic and hypothalamic nuclei, pedunculopontine nucleus, Barrington's nucleus, retrofacial nucleus, and retroambigual nucleus. Scattered terminals were observed in the olfactory bulbs, the prefrontal cortex and the lamina X of the cervical spinal cord. Because the terminals were demonstrated to express the glutamate transporter VGlut2, the projections are presumed to be excitatory. A common denominator of the main target sites of the Foxb1-positive axons of the parvafox nucleus appears to be an involvement in the defensive reactions to life-threatening situations. The hypothalamic parvafox nucleus may contribute to the autonomic manifestations that accompany the expression of emotions

    Birthdate of parvalbumin-neurons in the Parvafox-nucleus of the lateral hypothalamus

    Get PDF
    The Parvafox-nucleus in the lateral hypothalamus is characterized by the presence of two distinct neural populations, the Parvalbumin (Parv) and the Foxb1-expressing ones. Foxb1-neurons are born at day 10 in the subventricular zone of the mouse mammillary region. It would be interesting to know if the subpopulation of Parv- neurons develop independently at different times and then meet the Foxb1- expressing neurons in the lateral hypothalamus, their final settling place. The aim of this study was to define the period of birth of the Parv-positive neurons using an in-vivo Bromodeoxyuridine-based method in rats. Parv-neurons are generated from embryonic day 10 to day 13, with a peak at day 12. Thus, it appears that the birthdates of the two subpopulations in these two species is similar, perhaps suggesting that they are born from the same neuroepithelial region

    Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. <it>Sonic hedgehog </it>(<it>Shh</it>) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from <it>Shh-</it>expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary.</p> <p>Results</p> <p><it>Shh-</it>expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional <it>Shh</it>-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. <it>Shh-</it>expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes.</p> <p>Conclusions</p> <p>We define a fate map of the hypothalamus, based on the dynamic expression of <it>Shh </it>in the hypothalamic progenitor zones. We provide evidence that the large neurogenic <it>Shh-</it>expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains and that there is little or no cell mixing between the tuberal and anterior or the preoptic and anterior hypothalamus. Finally, we show that, in the tuberal hypothalamus, neurons destined for every mediolateral level are produced during a period of days, in conflict with the current 'three-wave' model of hypothalamic neurogenesis. Our work sets the stage for a deeper developmental analysis of this complex and important brain region.</p

    Cadherins mediate sequential roles through a hierarchy of mechanisms in the developing mammillary body

    Get PDF
    Expression of intricate combinations of cadherins (a family of adhesive membrane proteins) is common in the developing central nervous system. On this basis, a combinatorial cadherin code has long been proposed to underlie neuronal sorting and to be ultimately responsible for the layers, columns and nuclei of the brain. However, experimental proof of this particular function of cadherins has proven difficult to obtain and the question is still not clear. Alternatively, non-specific, non-combinatorial, purely quantitative adhesive differentials have been proposed to explain neuronal sorting in the brain. Do cadherin combinations underlie brain cytoarchitecture? We approached this question using as model a well-defined forebrain nucleus, the mammillary body (MBO), which shows strong, homogeneous expression of one single cadherin (Cdh11) and patterned, combinatorial expression of Cdh6, -8 and -10.We found that, besides the known combinatorial Cdh pattern, MBO cells are organized into a second, non-overlapping pattern grouping neurons with the same date of neurogenesis. Abolition of Cdh11 expression in the entire MBO during development disrupted the combination-based as well as the birthdate-based sorting. In utero RNAi experiments knocking down Cdh11 in MBO-fated migrating neurons at one specific age showed that Cdh11 expression is required for chronological entrance in the MBO.Our results suggest that neuronal sorting in the developing MBO is caused by adhesion-based, non-combinatorial mechanisms that keep neurons sorted according to birthdate information (possibly matching them to target neurons chronologically sorted in the same manner). Non-specific adhesion mechanisms would also prevent cadherin combinations from altering the birthdate-based sorting. Cadherin combinations would presumably act later to support specific synaptogenesis through specific axonal fasciculation and final target recognition

    Regulatory Pathway Analysis by High-Throughput In Situ Hybridization

    Get PDF
    Automated in situ hybridization enables the construction of comprehensive atlases of gene expression patterns in mammals. Such atlases can become Web-searchable digital expression maps of individual genes and thus offer an entryway to elucidate genetic interactions and signaling pathways. Towards this end, an atlas housing ∟1,000 spatial gene expression patterns of the midgestation mouse embryo was generated. Patterns were textually annotated using a controlled vocabulary comprising >90 anatomical features. Hierarchical clustering of annotations was carried out using distance scores calculated from the similarity between pairs of patterns across all anatomical structures. This process ordered hundreds of complex expression patterns into a matrix that reflects the embryonic architecture and the relatedness of patterns of expression. Clustering yielded 12 distinct groups of expression patterns. Because of the similarity of expression patterns within a group, members of each group may be components of regulatory cascades. We focused on the group containing Pax6, an evolutionary conserved transcriptional master mediator of development. Seventeen of the 82 genes in this group showed a change of expression in the developing neocortex of Pax6-deficient embryos. Electromobility shift assays were used to test for the presence of Pax6-paired domain binding sites. This led to the identification of 12 genes not previously known as potential targets of Pax6 regulation. These findings suggest that cluster analysis of annotated gene expression patterns obtained by automated in situ hybridization is a novel approach for identifying components of signaling cascades

    The orbitofrontal cortex projects to the parvafox nucleus of the ventrolateral hypothalamus and to its targets in the ventromedial periaqueductal grey matter

    Get PDF
    Although connections between the orbitofrontal cortex (OFC)—the seat of high cognitive functions—the lateral hypothalamus and the periaqueductal grey (PAG) have been recognized in the past, the precise targets of the descending fibres have not been identified. In the present study, viral tracer-transport experiments revealed neurons of the lateral (LO) and the ventrolateral (VLO) OFC (homologous to part of Area 13 in primates) to project to a circumscribed region in the ventrolateral hypothalamus, namely, the horizontally oriented, cylindrical parvalbumin- and Foxb1- expressing (parvafox) nucleus. The fine collaterals stem from coarse axons in the internal capsule and form excitatory synapses specifically with neurons of the parvafox nucleus, avoiding the rest of the hypothalamus. In its further caudal course, this contingent of LO/VLO-axons projects collaterals to the Su3- and the PV2 nuclei, which lie ventral to the aqueduct in the (PAG), where the terminals fields overlap those deriving from the parvafox nucleus itself. The targeting of the parvafox nucleus by the LO/VLO-projections, and the overlapping of their terminal fields within the PAG, suggest that the two cerebral sites interact closely. An involvement of this LO/VLO- driven circuit in the somatic manifestation of behavioural events is conceivable
    • …
    corecore