902 research outputs found

    Stem Cell Biology and Strategies for Therapeutic Development in Degenerative Diseases and Cancer

    Get PDF
    Stem cell biology is an exciting field that will lead to significant advancements in science and medicine. We hypothesize that inducing the expression of stem cell genes, using the embryonic stem cell gene nanog, will reprogram cells and dedifferentiate human mesenchymal stem cells into pluripotent stem cells capable of neural differentiation. The aims of initial studies are as follows: Aim 1: Demonstrate that forced expression of the embryonic stem cell gene nanog induces changes in human mesenchymal stem cells to an embryonic stem cell-like phenotype. Aim 2: Demonstrate that induced expression of nanog up-regulates the expression of multiple embryonic stem cell markers and expands the differentiation potential of the stem cells. Aim 3: Demonstrate that these nanog-expressing stem cells have the ability to differentiate along neural lineages in vitro and in vivo, while mock-transfected cells have an extremely limited capacity for transdifferentiation. Alternatively, we hypothesize that embryonic stem cell genes can become activated in malignant gliomas and differentially regulate the subpopulation of cancer stem cells. This study examines the role of embryonic stem cell genes in transformed cells, particularly cancer stem cells. These studies explore has the following objectives: Aim 1: Isolate different sub-populations of cells from tumors and characterize cells with stem cell-like properties. Aim 2: Characterize the expression of embryonic stem cell markers in the sub-population of cancer stem cells. Aim 3: Examine the effects of histone deacetylase inhibitors at inhibiting the growth and reducing the expression of stem cell markers. Our research has demonstrated the potential of the embryonic transcription factor, nanog, at inducing dedifferentiation of human bone marrow mesenchymal stem cells and allowing their recommitment to a neural lineage. Specifically, we used viral and non-viral vectors to induce expression of NANOG, which produced an embryonic stem cell-like morphology in transduced cells. We characterized these cells using real-time PCR and immunohistochemical staining and find an up-regulation of genes responsible for pluripotency and self-renewal. Embryonic stem cell markers including Sox2, Oct4 and TERT were up-regulated following delivery of nanog. The role of nanog in the expression of these markers was further demonstrated in our induced-differentiation method where we transfected embryonic stem cell-like cells, that have been transduced with nanog flanked by two loxP sites, with a vector containing Cre-recominase. We tested the ability of these nanog-transfected cells to undergo neural differentiation in vitro using a neural co-culture system or in vivo following intracranial transplantation. Our next study characterized patient-derived glioblastoma cancer stem cells. We found that cells isolated from serum-free stem cell cultures were enriched for stem cell markers and were more proliferative than the bulk population of cells grown in convention serum-supplemented media. These cancer stem cells expressed embryonic stem cell markers NANOG and OCT4 whereas non-tumor-derived neural stem cells do not. Moreover, the expression of stem cell markers was correlated with enhanced proliferation and could serve as a measure of drug effectiveness. We tested two different histone deacetylase inhibitors, trichostatin A and valproic acid, and found that both inhibited proliferation and significantly reduced expression of stem cell markers in our cancer stem cell lines. These data demonstrate the potential use of stem cell genes as therapeutic markers and supports the hypothesis that cancer stem cells are a major contributor to brain tumor malignancy

    Solid-State Transformer for Energy Efficiency Enhancement

    Get PDF
    The rapid evolution of power electronic solutions in all around the globe brings a common problem, which is the adoption of nonlinear loads. This fact carries out a strong impact over the quality of power systems and consequently on energy efficiency, since nonlinear loads act as sources of harmonic currents that flow to other loads or even sources, causing non-optimal performance in their operation. Nowadays, conventional transformers are limited to just manage (increase or decrease) voltage level, but they are not able to deal with power quality events, such as harmonics, sag, swell, among others. Hence, there is a need to incorporate a versatile smart device to deal with the challenges previously described for a smart grid environment. This chapter introduces a solid-state transformer (SST) with topology of multilevel cascade H bridge converter as a solution. SST is an emerging technology that has the advantages of low volume, low weight, fault isolation, and other management features. Within its fundamental operation, this chapter presents a detailed description of a SST system comprising communication and control, highlighting their main advantages in comparison with conventional transformer such as mitigation of waveform harmonic distortion, allowance of integration of distributed generation, and bi-directional power flow

    Atomic motions in the αβ\alpha\beta-region of glass-forming polymers: Molecular versus Mode Coupling Theory approach

    Full text link
    We present fully atomistic Molecular Dynamics simulation results on a main-chain polymer, 1,4-Polybutadiene, in the merging region of the α\alpha- and betabeta-relaxations. A real space analysis reveals the occurrence of localized motions (``β\beta-like'') in addition to the diffusive structural relaxation. A molecular approach provides a direct connection between the local conformational changes reflected in the atomic motions and the secondary relaxations in this polymer. Such local processes occur just in the time window where the β\beta-process of the Mode Coupling Theory is expected. We show that the application of this theory is still possible, and yields an unusually large value of the exponent parameter. This result might originate from the competition between two mechanisms for dynamic arrest: intermolecular packing and intramolecular barriers for local conformational changes (``β\beta-like'').Comment: 10 pages, 6 figure

    Hydride precipitation and stresses in zircaloy-4 observed by synchrotron X-ray diffraction

    Get PDF
    The grain stresses within hydrides precipitated in rolled zircaloy-4 plates were determined by synchrotron X-ray diffraction experiments using an 80 keV photon beam and a high-speed area detector placed in transmission geometry. Results showed large compressive stresses (360 ± 20 MPa) in the hydrides along the plate rolling direction. The origin of these stresses was investigated by performing hydride dissolution/precipitation in situ for thermal cycles between room temperature and 400 C. A large stress hysteresis was observed, with a steady decrease on heating and an abrupt change on cooling. The observed stresses are explained by the constraint imposed by grain boundaries on the growth of hydride platelets on the rolling–transverse plane of the rolled plates.Fil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Vicente Alvarez, Miguel Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Vizcaino, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Banchik, A. D.. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; ArgentinaFil: Almer, J. D.. No especifíca

    Supercritical fluid (SCF)-assisted preparation of cyclodextrin-based poly(pseudo)rotaxanes for transdermal purposes

    Get PDF
    This study aims to investigate the effect of the preparation of solid dispersions using supercritical CO2 (scCO2) on the physicochemical properties and the performance of supramolecular gels based on polymer-cyclodextrin (CD) interactions (named poly(pseudo)rotaxanes, PPR) envisaging a transdermal administration. Solid dispersions containing Soluplus®, the antihypertensive drug carvedilol (CAR), and CD (αCD or HPβCD) were prepared and characterized by HPLC, XRPD, FTIR, and DSC. PPRs prepared from solid dispersions (SCF gels) and the corresponding physical mixtures (PM gels) were analyzed regarding rheology, morphology, in vitro drug diffusion, and ex vivo drug skin permeation. The application of scCO2 led to the loss of the crystalline lattice of CAR while preserving its chemical identity. On the contrary, αCD crystals were still present in the SCF solid dispersions. SCF gels were more uniform than their corresponding PM, and the supercritical treatment resulted in changes in the rheological behavior, reducing the viscosity. CAR in vitro diffusion was significantly higher (p < 0.05) for the αCD-based SCF gel than its corresponding PM gel. Drug skin permeation showed a significant increase in drug flux from CD-based SCF gels (containing αCD or HPβCD) compared to corresponding PM gels. Additionally, the pretreatment of the skin with αCD exhibited increased CAR permeation, suggesting an interaction between αCD and the skin membrane. Results evidenced that SCF processing decisively modified the properties of the supramolecular gels, particularly those prepared with αCDOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was partially supported by the Brazilian agency Fundação de Apoio à Pesquisa do Estado de Goiás (FAPEG). The work was supported by MCIN/AEI/10.13039/501100011033 (PID 2020-113881RB-I00), Spain, Xunta de Galicia (ED431C 2020/17), and FEDERS

    Reframing the link between metabolism and NLRP3 inflammasome: therapeutic opportunities

    Get PDF
    Inflammasomes are multiprotein signaling platforms in the cytosol that senses exogenous and endogenous danger signals and respond with the maturation and secretion of IL-1β and IL-18 and pyroptosis to induce inflammation and protect the host. The inflammasome best studied is the Nucleotide-binding oligomerization domain, leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome. It is activated in a two-step process: the priming and the activation, leading to sensor NLRP3 oligomerization and recruitment of both adaptor ASC and executioner pro-caspase 1, which is activated by cleavage. Moreover, NLRP3 inflammasome activation is regulated by posttranslational modifications, including ubiquitination/deubiquitination, phosphorylation/dephosphorylation, acetylation/deacetylation, SUMOylation and nitrosylation, and interaction with NLPR3 protein binding partners. Moreover, the connection between it and metabolism is receiving increasing attention in this field. In this review, we present the structure, functions, activation, and regulation of NLRP3, with special emphasis on regulation by mitochondrial dysfunction-mtROS production and metabolic signals, i.e., metabolites as well as enzymes. By understanding the regulation of NLRP3 inflammasome activation, specific inhibitors can be rationally designed for the treatment and prevention of various immune- or metabolic-based diseases. Lastly, we review current NLRP3 inflammasome inhibitors and their mechanism of action

    A tumor-stroma targeted oncolytic adenovirus replicated in human ovary cancer samples and inhibited growth of disseminated solid tumors in mice

    Get PDF
    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 10(10) v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15-40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression.Fil: Lopez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Rivera, Angel A.. University Of Alabama At Birmingahm; Estados UnidosFil: Viale, Diego Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Benedetti, Lorena Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Cuneo, Nicasio. Hospital Municipal de Oncología Marie Curie; ArgentinaFil: Kimball, Kristopher J.. University Of Alabama At Birmingahm; Estados UnidosFil: Wang, Minghui. University Of Alabama At Birmingahm. School Of Medicine. Division Of Human Gene Therapy; Estados UnidosFil: Douglas, Joanne T.. University Of Alabama At Birmingahm. School Of Medicine. Division Of Human Gene Therapy; Estados UnidosFil: Zhu, Zeng B.. University Of Alabama At Birmingahm. School Of Medicine. Division Of Human Gene Therapy; Estados UnidosFil: Bravo, Alicia I.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "eva Peron"; ArgentinaFil: Gidekel, Manuel. Universidad de la Frontera; ChileFil: Alvarez, Ronald D.. University Of Alabama At Birmingahm; Estados UnidosFil: Curiel, David T.. University Of Alabama At Birmingahm. School Of Medicine. Division Of Human Gene Therapy; Estados Unidos. University of Washington; Estados UnidosFil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentin
    corecore