25 research outputs found

    Temporal Expression Pattern Of The Insulin-like Growth Factor Ii And Fibroblast Growth Factor Transcripts In Vian Embryogenesis

    Get PDF
    In this study, the abundance of IGF-II and bFGF transcripts was estimated in the chicken embryos using the competitive RT-PCR analysis. Significant enhancements in the abundance of IGF-II mRNA were observed at stages HH1 and 5, and a new accumulation in these levels was observed at stage HH18 in comparison to the basal levels. The abundance of bFGF mRNA increased significantly at stages HH18 and 20, followed by an upregulation in the expression of these transcripts at stage HH26. These findings provided important information about the temporal expression pattern of IGF-II and bFGF transcripts in the whole chicken embryos during in ovo development.515949955Bass, J., Oldham, J., Sharma, M., Kambadur, R., Growth factors controlling muscle development (1999) Dom. An. Endocrinol, 17, pp. 191-197Borja, A.J.M., Zeller, R., Meyers, C., Expression of alternatively spliced bFGF coding exons and antisense mRNAs during chicken embryogenesis (1993) Dev. Biol, 157, pp. 110-118Castelli, R., Porro, F., Tarsia, P., The heparins and cancer: Review of clinical trials and biological properties (2004) Vas. Med, 9, pp. 205-213Chomczynski, P., Sacchi, N., Single step method of RNA isolation by acid guanidinium thiocyanatephenol chloroform extraction (1987) Analytical Biochem, 162, pp. 156-159Cohn, M.J., Izpisúa-Belmonte, J.C., Abud, H., Heath, J.K., Tickle, C., Fibroblast growth factors induce additional limb development from the flank of chick embryos (1995) Cell, 80, pp. 739-746Cook, R.D., Weisberg, S., Transforming a response variable for linearity (1994) Biometrika, 81, pp. 731-737Darling, D.C., Brickell, P.M., Nucleotide sequence and genomic structure of the chicken insulin-like growth factor-II (IGF-II) coding region (1996) Gen. Comp. Endocrinol, 102, pp. 283-287Denley, A., Cosgrove, L., Booker, G., Wallace, J., Forbes, B., Molecular interactions of the IGF system (2005) Cytokine Growth Factor Rev, 16, pp. 421-439Florini, J.R., Magri, K.A., Ewton, D.Z., James, P.L., Grindstaff, K., Rotwein, P., Spontaneous differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II (1991) J. Biol. Chem, 266, pp. 15917-15923Florini, J.R., Ewton, D.Z., Cooligan, S.A., Growth hormone and the insulin-like growth factor system in myogenesis (1996) Endocrine Rev, 1795, pp. 481-517Gabriel, J.E., Javiel, H.A., Alvares, L.A., Schmidt, G., Coutinho, L.L., In situ detection of the myogenic factor MyoD in whole chicken embryos (2000) Genet. Mol. Biol, 23, pp. 145-148Gabriel, J.E., Alvares, L.E., Gobet, M.C., de Paz, C.C.P., Packer, I.U., Macari, M., Coutinho, L.L., Expression of MyoD, myogenin, myostatin and Hsp70 transcripts in chicken embryos submitted to mild cold or heat (2003) J. Thermal Biol, 28, pp. 261-269Hamburger, V., Hamilton, H.L., A series of normal stages in the development of the chick embryo (1951) J. Morphol, 88, pp. 49-92Hannon, K., Smith, C.K., Bales, K.R., Santerre, R.F., Temporal and quantitative analysis of myogenic regulatory and growth factor gene expression in the developing mouse embryo (1992) Dev. Biol, 151, pp. 137-144Kocamis, H., Killefer, J., Expression profiles of IGF-I, IGF-II, bFGF and TGF-b2 growth factors during chicken embryonic development (2003) Turk J Vet Anim Sci, 27, pp. 367-372Kost, T.A., Theodorakis, N., Hughes, S.H., The nucleotide sequence of the chick cytoplasmic betaactin gene (1983) Nucleic Acids Res, 11, pp. 8287-8301Muramatsu, M., Yamada, M., Takai, S., Miyazaki, M., Suppression of basic fibroblast growth factor-induced angiogenesis by a specific chymase inhibitor, BCEAB, through the chymase-angiotensin-dependent pathway in hamster sponge granulomas (2002) Br. J. Pharmacol, 137, pp. 554-560Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Isbimam, Y., Yoshioka, H., Noji, S., The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor (1997) Development, 113, pp. 1419-1434Pirskanen, A., Kiefer, J.C., Hauschka, S.D., IGFs, insulin, Shh, bFGF, and TGF-beta 1 interact synergistically to promote somite myogenesis in vitro (2000) Dev. Biol, 224, pp. 189-203Pownall, M.E., Emerson Jr., C.J., Sequential activation of three myogenic regulatory genes during somite mophogenesis in quail embryos (1992) Dev. Biol, 151, pp. 67-79Sambrook, J., Fritsch, E.F., Maniatis, T. Extraction, purification, analysis of messenger RNA from eukaryotic cells. In: Ford, N. Molecular cloning: a laboratory manual. 2.ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989, pp.7.40-7.87Sanchez, C.L., Rodriguez-Gallardo, L., Alvarez, I.S., Climent, V., Garcia-Martinez, V., Effects of growth factors on the commitment of chick blastoderm (2001) Int. J. Dev. Biol, 45, pp. S109-S110SAS Institute. SAS/STAT User's guide. Online Version. 8.ed. Cary: SAS Institute, 1999Szebenyi, G., Fallon, W., Fibroblast growth factors as multifunctional signaling factors (1999) Int Rev Citol, 185, pp. 45-106Tsai, S., Wiltbank, M.C., Quantification of mRNA using competitive RT-PCR with standard curve methodology (1996) Biotechniques, 21, pp. 862-86

    CURSO DIÁRIO E SAZONAL DO POTENCIAL HÍDRICO FOLIAR DE MOGNO EM SISTEMAAGROFLORESTAL1

    Get PDF
    Este trabalho objetivou avaliar o curso diário e sazonal do potencial hídrico foliar de mogno (Swietenia macrophylla King) (Meliaceae) em sistema agroflorestal (SAF). O experimento foi realizado em árvores de S. macrophylla plantadas num sistema agroflorestal instalado no Campo Experimental da Embrapa Amazônia Ocidental, Manaus, AM. Avaliou-se o potencial hídrico foliar (Ψf) dos cursos diário e sazonal nos anos 2004 e 2005, por meio da utilização de bomba de pressão tipo Scholander. Os resultados indicaram que os valores do Ψf de S. macrophylla, de modo geral, foram superiores no início da manhã e no final da tarde, com redução acentuada ao meio-dia, e que, em relação à sazonalidade de precipitação, as menores taxas foram reportadas para a época menos chuvosa, variando de -26 bar em 2004 para -31bar em 2005. Verificou-se que o potencial hídrico de Swietenia macrophylla em sistema agroflorestal sofreu reduções significativas em razão dos baixos índices pluviométricos entre junho e outubro de 2005

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Standard-curve competitive RT-PCR quantification of myogenic regulatory factors in chicken embryos

    No full text
    The reverse transcription-polymerase chain reaction (RT-PCR) is the most sensitive method used to evaluate gene expression. Although many advances have been made since quantitative RT-PCR was first described, few reports deal with the mathematical bases of this technique. The aim of the present study was to develop and standardize a competitive PCR method using standard-curves to quantify transcripts of the myogenic regulatory factors MyoD, Myf-5, Myogenin and MRF4 in chicken embryos. Competitor cDNA molecules were constructed for each gene under study using deletion primers, which were designed to maintain the anchorage sites for the primers used to amplify target cDNAs. Standard-curves were prepared by co-amplification of different amounts of target cDNA with a constant amount of competitor. The content of specific mRNAs in embryo cDNAs was determined after PCR with a known amount of competitor and comparison to standard-curves. Transcripts of the housekeeping ß-actin gene were measured to normalize the results. As predicted by the model, most of the standard-curves showed a slope close to 1, while intercepts varied depending on the relative efficiency of competitor amplification. The sensitivity of the RT-PCR method permitted the detection of as few as 60 MyoD/Myf-5 molecules per reaction but approximately 600 molecules of MRF4/Myogenin mRNAS were necessary to produce a measurable signal. A coefficient of variation of 6 to 19% was estimated for the different genes analyzed (6 to 9 repetitions). The competitive RT-PCR assay described here is sensitive, precise and allows quantification of up to 9 transcripts from a single cDNA sample

    Temporal expression pattern of myostatin transcripts during chicken embryogenesis Padrão de expressão temporal de transcritos de miostatina durante a embriogênese da galinha

    No full text
    No presente estudo, estimou-se a abundância dos transcritos da miostatina foi estimada durante a embriogênese de galinha por análises de RT-PCR competitiva. Níveis basais de mRNA desse gene foram detectados até o estádio HH15, enquanto acúmulos significativos nesses níveis foram observados apenas no estádio HH24, seguido por redução na abundância desses transcritos a partir do estádio HH26. Tais descobertas preliminares proporcionam informações relevantes sobre a ativação do fator de crescimento miostatina durante o desenvolvimento in ovo de aves

    Dact Genes Are Chordate Specific Regulators At The Intersection Of Wnt And Tgf-β Signaling Pathways

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Background: Dacts are multi-domain adaptor proteins. They have been implicated in Wnt and Tgfβ signaling and serve as a nodal point in regulating many cellular activities. Dact genes have so far only been identified in bony vertebrates. Also, the number of Dact genes in a given species, the number and roles of protein motifs and functional domains, and the overlap of gene expression domains are all not clear. To address these problems, we have taken an evolutionary approach, screening for Dact genes in the animal kingdom and establishing their phylogeny and the synteny of Dact loci. Furthermore, we performed a deep analysis of the various Dact protein motifs and compared the expression patterns of different Dacts. Results: Our study identified previously not recognized dact genes and showed that they evolved late in the deuterostome lineage. In gnathostomes, four Dact genes were generated by the two rounds of whole genome duplication in the vertebrate ancestor, with Dact1/3 and Dact2/4, respectively, arising from the two genes generated during the first genome duplication. In actinopterygians, a further dact4r gene arose from retrotranscription. The third genome duplication in the teleost ancestor, and subsequent gene loss in most gnathostome lineages left extant species with a subset of Dact genes. The distribution of functional domains suggests that the ancestral Dact function lied with Wnt signaling, and a role in Tgfβ signaling may have emerged with the Dact2/4 ancestor. Motif reduction, in particular in Dact4, suggests that this protein may counteract the function of the other Dacts. Dact genes were expressed in both distinct and overlapping domains, suggesting possible combinatorial function. Conclusions: The gnathostome Dact gene family comprises four members, derived from a chordate-specific ancestor. The ability to control Wnt signaling seems to be part of the ancestral repertoire of Dact functions, while the ability to inhibit Tgfβ signaling and to carry out specialized, ortholog-specific roles may have evolved later. The complement of Dact genes coexpressed in a tissue provides a complex way to fine-tune Wnt and Tgfβ signaling. Our work provides the basis for future structural and functional studies aimed at unraveling intracellular regulatory networks.1412006/05892-3; FAPESP; São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Croce, J.C., McClay, D.R., Evolution of the Wnt pathways (2008) Methods Mol Biol, 469, pp. 3-18Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C., Heldin, C.H., Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom (2009) BMC Evol Biol, 9, p. 28Cheyette, B.N., Waxman, J.S., Miller, J.R., Takemaru, K., Sheldahl, L.C., Khlebtsova, N., Fox, E.P., Moon, R.T., Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation (2002) Dev Cell, 2 (4), pp. 449-461Gloy, J., Hikasa, H., Sokol, S.Y., Frodo interacts with Dishevelled to transduce Wnt signals (2002) Nat Cell Biol, 4 (5), pp. 351-357Wong, H.C., Bourdelas, A., Krauss, A., Lee, H.J., Shao, Y., Wu, D., Mlodzik, M., Zheng, J., Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled (2003) Mol Cell, 12 (5), pp. 1251-1260Zhang, L., Zhou, H., Su, Y., Sun, Z., Zhang, H., Zhang, L., Zhang, Y., Meng, A., Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors (2004) Science, 306 (5693), pp. 114-117Su, Y., Zhang, L., Gao, X., Meng, F., Wen, J., Zhou, H., Meng, A., Chen, Y.G., The evolutionally conserved activity of Dapper2 in antagonizing TGF-beta signaling (2007) FASEB J, 21 (3), pp. 682-690Suriben, R., Kivimae, S., Fisher, D.A., Moon, R.T., Cheyette, B.N., Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak (2009) Nat Genet, 41 (9), pp. 977-985Kivimae, S., Yang, X.Y., Cheyette, B.N., All Dact (Dapper/Frodo) scaffold proteins dimerize and exhibit conserved interactions with Vangl, Dvl, and serine/threonine kinases (2011) BMC Biochem, 12, p. 33Meng, F., Cheng, X., Yang, L., Hou, N., Yang, X., Meng, A., Accelerated re-epithelialization in Dpr2-deficient mice is associated with enhanced response to TGFbeta signaling (2008) J Cell Sci, 121 (PART 17), pp. 2904-2912Park, J.I., Ji, H., Jun, S., Gu, D., Hikasa, H., Li, L., Sokol, S.Y., McCrea, P.D., Frodo links Dishevelled to the p120-catenin/Kaiso pathway: Distinct catenin subfamilies promote Wnt signals (2006) Dev Cell, 11 (5), pp. 683-695Gao, X., Wen, J., Zhang, L., Li, X., Ning, Y., Meng, A., Chen, Y.G., Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus (2008) J Biol Chem, 283 (51), pp. 35679-35688Hikasa, H., Sokol, S.Y., The involvement of Frodo in TCF-dependent signaling and neural tissue development (2004) Development, 131 (19), pp. 4725-4734Brott, B.K., Sokol, S.Y., A vertebrate homolog of the cell cycle regulator Dbf4 is an inhibitor of Wnt signaling required for heart development (2005) Dev Cell, 8 (5), pp. 703-715Teran, E., Branscomb, A.D., Seeling, J.M., Dpr Acts as a molecular switch, inhibiting Wnt signaling when unphosphorylated, but promoting Wnt signaling when phosphorylated by casein kinase Idelta/epsilon (2009) PLoS One, 4 (5), p. 55522Chen, H., Liu, L., Ma, B., Ma, T.M., Hou, J.J., Xie, G.M., Wu, W., Chen, Y.G., Protein kinase A-mediated 14-3-3 association impedes human Dapper1 to promote dishevelled degradation (2011) J Biol Chem, 286 (17), pp. 14870-14880Zhang, L., Gao, X., Wen, J., Ning, Y., Chen, Y.G., Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation (2006) J Biol Chem, 281 (13), pp. 8607-8612Waxman, J.S., Hocking, A.M., Stoick, C.L., Moon, R.T., Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes (2004) Development, 131 (23), pp. 5909-5921Holland, P.W., Garcia-Fernandez, J., Williams, N.A., Sidow, A., Gene duplications and the origins of vertebrate development (1994) Dev Suppl, pp. 125-133Dehal, P., Boore, J.L., Two rounds of whole genome duplication in the ancestral vertebrate (2005) PLoS Biol, 3 (10), p. 5314Jaillon, O., Aury, J.M., Brunet, F., Petit, J.L., Stange-Thomann, N., Mauceli, E., Bouneau, L., Poulain, J., Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype (2004) Nature, 431 (7011), pp. 946-957Taylor, J.S., Van De Peer, Y., Braasch, I., Meyer, A., Comparative genomics provides evidence for an ancient genome duplication event in fish (2001) Philos Trans R Soc Lond B Biol Sci, 356 (1414), pp. 1661-1679Postlethwait, J.H., The zebrafish genome in context: Ohnologs gone missing (2007) J Exp Zool B Mol Dev Evol, 308 (5), pp. 563-577Fisher, D.A., Kivimae, S., Hoshino, J., Suriben, R., Martin, P.M., Baxter, N., Cheyette, B.N., Three Dact gene family members are expressed during embryonic development and in the adult brains of mice (2006) Dev Dyn, 235 (9), pp. 2620-2630Hunter, N.L., Hikasa, H., Dymecki, S.M., Sokol, S.Y., Vertebrate homologues of Frodo are dynamically expressed during embryonic development in tissues undergoing extensive morphogenetic movements (2006) Dev Dyn, 235 (1), pp. 279-284Suriben, R., Fisher, D.A., Cheyette, B.N., Dact1 presomitic mesoderm expression oscillates in phase with Axin2 in the somitogenesis clock of mice (2006) Dev Dyn, 235 (11), pp. 3177-3183Alvares, L.E., Winterbottom, F.L., Jorges, E.C., Rodrigues Sobreira, D., Xavier-Neto, J., Schubert, F.R., Dietrich, S., Chicken dapper genes are versatile markers for mesodermal tissues, embryonic muscle stem cells, neural crest cells, and neurogenic placodes (2009) Dev Dyn, 238 (5), pp. 1166-1178Gillhouse, M., Wagner Nyholm, M., Hikasa, H., Sokol, S.Y., Grinblat, Y., Two Frodo/Dapper homologs are expressed in the developing brain and mesoderm of zebrafish (2004) Dev Dyn, 230 (3), pp. 403-409Kumar, S., Hedges, S.B., A molecular timescale for vertebrate evolution (1998) Nature, 392 (6679), pp. 917-920Irie, N., Sehara-Fujisawa, A., The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information (2007) BMC Biol, 5, p. 1Sensiate, L.A., Sobreira, D.R., Da Veiga, F.C., Peterlini, D.J., Pedrosa, A.V., Rirsch, T., Joazeiro, P.P., Alvares, L.E., Dact gene expression profiles suggest a role for this gene family in integrating Wnt and TGF-beta signaling pathways during chicken limb development (2013) Dev Dyn, 243 (3), pp. 428-439Kuraku, S., Meyer, A., Kuratani, S., Timing of genome duplications relative to the origin of the vertebrates: Did cyclostomes diverge before or after? (2009) Mol Biol Evol, 26 (1), pp. 47-59Smith, J.J., Kuraku, S., Holt, C., Sauka-Spengler, T., Jiang, N., Campbell, M.S., Yandell, M.D., Rohner, N., Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution (2013) Nat Genet, 45 (4), pp. 415-421. , 421e411-412Mehta, T.K., Ravi, V., Yamasaki, S., Lee, A.P., Lian, M.M., Tay, B.H., Tohari, S., Venkatesh, B., Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum) (2013) Proc Natl Acad Sci U S A, 110 (40), pp. 16044-16049Delsuc, F., Brinkmann, H., Chourrout, D., Philippe, H., Tunicates and not cephalochordates are the closest living relatives of vertebrates (2006) Nature, 439 (7079), pp. 965-968Solovyev, V., Kosarev, P., Seledsov, I., Vorobyev, D., Automatic annotation of eukaryotic genes, pseudogenes and promoters (2006) Genome Biol, 7 (SUPPL. 1), pp. 19101-19112Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22 (22), pp. 4673-4680Notredame, C., Higgins, D.G., Heringa, J., T-Coffee: A novel method for fast and accurate multiple sequence alignment (2000) J Mol Biol, 302 (1), pp. 205-217Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp ser, 41, pp. 95-98Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses (2009) Bioinformatics, 25 (15), pp. 1972-1973Darriba, D., Taboada, G.L., Doallo, R., Posada, D., ProtTest 3: Fast selection of best-fit models of protein evolution (2011) Bioinformatics, 27 (8), pp. 1164-1165Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Syst Biol, 59 (3), pp. 307-321Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Gascuel, O., Phylogeny.fr: Robust phylogenetic analysis for the non-specialist (2008) Nucleic Acids Res, 36 (WEB SERVER ISSUE), pp. 23465-W469Le Vinh, S., Von Haeseler, A., IQPNNI: Moving fast through tree space and stopping in time (2004) Mol Biol Evol, 21 (8), pp. 1565-1571Ronquist, F., Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19 (12), pp. 1572-1574Schmidt, H.A., Strimmer, K., Vingron, M., Von Haeseler, A., TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing (2002) Bioinformatics, 18 (3), pp. 502-504Letunic, I., Bork, P., Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation (2007) Bioinformatics, 23 (1), pp. 127-128Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., WebLogo: A sequence logo generator (2004) Genome Res, 14 (6), pp. 1188-1190Nakai, K., Horton, P., PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization (1999) Trends Biochem Sci, 24 (1), pp. 34-36La Cour, T., Kiemer, L., Molgaard, A., Gupta, R., Skriver, K., Brunak, S., Analysis and prediction of leucine-rich nuclear export signals (2004) Protein Eng des Sel, 17 (6), pp. 527-536Hamburger, V., Hamilton, H.L., A series of normal stages in the development of the chick embryo (1951) J Morphol, 88, pp. 49-92Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., Stages of embryonic development of the zebrafish (1995) Dev Dyn, 203 (3), pp. 253-310Thisse, C., Thisse, B., High-resolution in situ hybridization to whole-mount zebrafish embryos (2008) Nat Protoc, 3 (1), pp. 59-69Schubert, F.R., Sobreira, D.R., Janousek, R.G., Alvares, L.E., Dietrich, S., Phylogenetic trees for: Dact genes are chordate specific regulators at the intersection of Wnt and Tgf-beta signaling pathways (2014) TreeBase, , http://purl.org/phylo/treebase/phylows/study/TB2:S1597

    Conservation Of Gene Linkage In Dispersed Vertebrate Nk Homeobox Clusters

    No full text
    Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/ bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes. © 2010 Springer-Verlag.2199-10481496Adamska, M., Leger, S., Brand, M., Hadrys, T., Braun, T., Bober, E., Inner ear and lateral line expression of a zebrafish Nkx5-1 gene and its downregulation in the ears of FGF8 mutant, ace (2000) Mech Dev, 97 (1-2), pp. 161-165Adamska, M., Wolff, A., Kreusler, M., Wittbrodt, J., Braun, T., Bober, E., Five Nkx5 genes show differential expression patterns in anlagen of sensory organs in medaka: Insight into the evolution of the gene family (2001) Dev Genes Evol, 211 (7), pp. 338-349Amemiya, C.T., Prohaska, S.J., Hill-Force, A., Cook, A., Wasserscheid, J., Ferrier, D.E., Pascual-Anaya, J., Stadler, P.F., The amphioxus Hox cluster: Characterization, comparative genomics, and evolution (2008) J Exp Zoolog B Mol Dev Evol, 310 (5), pp. 465-477Amores, A., Force, A., Yan, Y.-L., Joly, L., Amemiya, C., Fritz, A., Ho, R.K., Postlethwait, J.H., Zebrafish hox clusters and vertebrate genome evolution (1998) Science, 282 (5394), pp. 1711-1714Biben, C., Hatzistavrou, T., Harvey, R.P., Expression of NK-2 class homeobox gene Nkx2-6 in foregut endoderm and heart (1998) Mech Dev, 73 (1), pp. 125-127Bober, E., Baum, C., Braun, T., Arnold, H.H., A novel NK-related mouse homeobox gene: Expression in central and peripheral nervous structures during embryonic development (1994) Dev Biol, 162 (1), pp. 288-303Brohmann, H., Jagla, K., Birchmeier, C., The role of Lbx1 in migration of muscle precursor cells (2000) Development, 127 (2), pp. 437-445Brudno, M., Do, C.B., Cooper, G.M., Kim, M.F., Davydov, E., Green, E.D., Sidow, A., Batzoglou, S., LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA (2003) Genome Res, 13 (4), pp. 721-731Brudno, M., Malde, S., Poliakov, A., Do, C.B., Couronne, O., Dubchak, I., Batzoglou, S., Glocal alignment: Finding rearrangements during alignment (2003) Bioinformatics, 19 (SUPPL 1), pp. i54-i62Butts, T., Holland, P.W., Ferrier, D.E., The urbilaterian Super-Hox cluster (2008) Trends Genet, 24 (6), pp. 259-262Catchen, J., (2009) Automated Methods to Infer Ancient Homology and Synteny, , Ph.D. Dissertation, Department of Computer and Information Science, University of OregonChen, F., Liu, K.C., Epstein, J.A., Lbx2, a novel murine homeobox gene related to the Drosophila ladybird genes is expressed in the developing urogenital system, eye and brain (1999) Mech Dev, 84 (1-2), pp. 181-184Cheng, L., Arata, A., Mizuguchi, R., Qian, Y., Karunaratne, A., Gray, P.A., Arata, S., Ma, Q., Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates (2004) Nat Neurosci, 7 (5), pp. 510-517Cheng, L., Samad, O.A., Xu, Y., Mizuguchi, R., Luo, P., Shirasawa, S., Goulding, M., Ma, Q., Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes (2005) Nat Neurosci, 8 (11), pp. 1510-1515Chiu, C.H., Amemiya, C., Dewar, K., Kim, C.B., Ruddle, F.H., Wagner, G.P., Molecular evolution of the HoxA cluster in the three major gnathostome lineages (2002) Proc Natl Acad Sci U S A, 99 (8), pp. 5492-5497Cleaver, O.B., Patterson, K.D., Krieg, P.A., Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia (1996) Development, 122 (11), pp. 3549-3556De La Calle-Mustienes, E., Feijoo, C.G., Manzanares, M., Tena, J.J., Rodriguez-Seguel, E., Letizia, A., Allende, M.L., Gomez-Skarmeta, J.L., A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts (2005) Genome Res, 15 (8), pp. 1061-1072Dehal, P., Boore, J.L., Two rounds of whole genome duplication in the ancestral vertebrate (2005) PLoS Biol, 3 (10), pp. e314Deitcher, D.L., Fekete, D.M., Cepko, C.L., Asymmetric expression of a novel homeobox gene in vertebrate sensory organs (1994) J Neurosci, 14 (2), pp. 486-498Dietrich, S., Schubert, F.R., Healy, C., Sharpe, P.T., Lumsden, A., Specification of the hypaxial musculature (1998) Development, 125 (12), pp. 2235-2249Engstrom, P.G., Ho Sui, S.J., Drivenes, O., Becker, T.S., Lenhard, B., Genomic regulatory blocks underlie extensive microsynteny conservation in insects (2007) Genome Res, 17 (12), pp. 1898-1908Evans, S.M., Yan, W., Murillo, M.P., Ponce, J., Papalopulu, N., Tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman (1995) Development, 121 (11), pp. 3889-3899Ferrier, D.E., Minguillon, C., Evolution of the Hox/ParaHox gene clusters (2003) Int J Dev Biol, 47 (7-8), pp. 605-611Fisher, S., Grice, E.A., Vinton, R.M., Bessling, S.L., McCallion, A.S., Conservation of RET regulatory function from human to zebrafish without sequence similarity (2006) Science, 312 (5771), pp. 276-279French, C.R., Erickson, T., Callander, D., Berry, K.M., Koss, R., Hagey, D.W., Stout, J., Waskiewicz, A.J., Pbx homeodomain proteins pattern both the zebrafish retina and tectum (2007) BMC Dev Biol, 7, p. 85Garcia-Fernandez, J., The genesis and evolution of homeobox gene clusters (2005) Nat Rev Genet, 6 (12), pp. 881-892Gross, M.K., Moran-Rivard, L., Velasquez, T., Nakatsu, M.N., Jagla, K., Goulding, M., Lbx1 is required for muscle precursor migration along a lateral pathway into the limb (2000) Development, 127 (2), pp. 413-424Guindon, S., Gascuel, O., A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood (2003) Syst Biol, 52 (5), pp. 696-704Guindon, S., Lethiec, F., Duroux, P., Gascuel, O., PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference (2005) Nucleic Acids Res, 33 (WEB SERVER ISSUE), pp. W557-W559Hadrys, T., Braun, T., Rinkwitz-Brandt, S., Arnold, H.H., Bober, E., Nkx5-1 controls semicircular canal formation in the mouse inner ear (1998) Development, 125 (1), pp. 33-39Hardies, S.C., Edgell, M.H., Hutchison III, C.A., Evolution of the mammalian beta-globin gene cluster (1984) J Biol Chem, 259 (6), pp. 3748-3756Hatano, M., Iitsuka, Y., Yamamoto, H., Dezawa, M., Yusa, S., Kohno, Y., Tokuhisa, T., Ncx, a Hox11 related gene, is expressed in a variety of tissues derived from neural crest cells (1997) Anat Embryol (Berl), 195 (5), pp. 419-425Herbrand, H., Guthrie, S., Hadrys, T., Hoffmann, S., Arnold, H.H., Rinkwitz-Brandt, S., Bober, E., Two regulatory genes, cNkx5-1 and cPax2, show different responses to local signals during otic placode and vesicle formation in the chick embryo (1998) Development, 125 (4), pp. 645-654Hoegg, S., Meyer, A., Phylogenomic analyses of KCNA gene clusters in vertebrates: Why do gene clusters stay intact? (2007) BMC Evol Biol, 7, p. 139Holland, P.W., Garcia-Fernandez, J., Williams, N.A., Sidow, A., Gene duplications and the origins of vertebrate development (1994) Dev Suppl, 1994, pp. 125-133Holland, P.W., Booth, H.A., Bruford, E.A., Classification and nomenclature of all human homeobox genes (2007) BMC Biol, 5, p. 47Houweling, A., Dildrop, R., Peters, T., Mummenhoff, J., Moorman, A., Ruther, U., Christoffels, V., Gene and cluster-specific expression of the Iroquois family members during mouse development (2001) Mech Dev, 107, pp. 169-174Irimia, M., Maeso, I., Garcia-Fernandez, J., Convergent evolution of clustering of Iroquois homeobox genes across metazoans (2008) Mol Biol Evol, 25 (8), pp. 1521-1525Jagla, K., Bellard, M., Frasch, M., A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs (2001) Bioessays, 23 (2), pp. 125-133Jovelin, R., Yan, Y.L., He, X., Catchen, J., Amores, A., Canestro, C., Yokoi, H., Evolution of developmental regulation in the vertebrate FgfD subfamily (2009) J Exp Zoolog B Mol Dev Evol, , in pressKanamoto, T., Terada, K., Yoshikawa, H., Furukawa, T., Cloning and expression pattern of lbx3, a novel chick homeobox gene (2006) Gene Expr Patterns, 6 (3), pp. 241-246Kim, C.B., Amemiya, C., Bailey, W., Kawasaki, K., Mezey, J., Miller, W., Minoshima, S., Ruddle, F., Hox cluster genomics in the horn shark, Heterodontus francisci (2000) Proc Natl Acad Sci U S A, 97 (4), pp. 1655-1660Kimura-Yoshida, C., Kitajima, K., Oda-Ishii, I., Tian, E., Suzuki, M., Yamamoto, M., Suzuki, T., Matsuo, I., Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification (2004) Development, 131 (1), pp. 57-71Langenau, D., Palomero, T., Kanki, J., Ferrando, A., Zhou, Y., Zon, L., Look, A., Molecular cloning and developmental expression of Tlx (Hox11) genes in zebrafish (Danio rerio) (2002) Mech Dev, 117 (1-2), pp. 243-248Larroux, C., Fahey, B., Degnan, S.M., Adamski, M., Rokhsar, D.S., Degnan, B.M., The NK homeobox gene cluster predates the origin of Hox genes (2007) Curr Biol, 17 (8), pp. 706-710Lee, K.H., Xu, Q., Breitbart, R.E., A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm (1996) Dev Biol, 180 (2), pp. 722-731Lettice, L., Hecksher-Sorensen, J., Hill, R., The role of Bapx1 (Nkx3.2) in the development and evolution of the axial skeleton (2001) J Anat, 199 (PT 1-2), pp. 181-187Lettice, L.A., Heaney, S.J., Purdie, L.A., Li, L., De Beer, P., Oostra, B.A., Goode, D., De Graaff, E., A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly (2003) Hum Mol Genet, 12 (14), pp. 1725-1735Logan, C., Wingate, R.J., McKay, I.J., Lumsden, A., Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: Markers of patterned connectivity (1998) J Neurosci, 18 (14), pp. 5389-5402Luke, G.N., Castro, L.F., McLay, K., Bird, C., Coulson, A., Holland, P.W., Dispersal of NK homeobox gene clusters in amphioxus and humans (2003) Proc Natl Acad Sci U S A, 100 (9), pp. 5292-5295Martin, B.L., Harland, R.M., A novel role for lbx1 in Xenopus hypaxial myogenesis (2006) Development, 133 (2), pp. 195-208Mazet, F., Amemiya, C.T., Shimeld, S.M., An ancient Fox gene cluster in bilaterian animals (2006) Curr Biol, 16 (9), pp. R314-R316McEwen, G.K., Woolfe, A., Goode, D., Vavouri, T., Callaway, H., Elgar, G., Ancient duplicated conserved noncoding elements in vertebrates: A genomic and functional analysis (2006) Genome Res, 16 (4), pp. 451-465Mennerich, D., Hoffmann, S., Hadrys, T., Arnold, H.H., Bober, E., Two highly related homeodomain proteins, Nkx5-1 and Nkx5-2, display different DNA binding specificities (1999) Biol Chem, 380 (9), pp. 1041-1048Moisan, V., Bomgardner, D., Tremblay, J.J., Expression of the Ladybird-like homeobox 2 transcription factor in the developing mouse testis and epididymis (2008) BMC Dev Biol, 8, p. 22Mulley, J.F., Chiu, C.H., Holland, P.W., Breakup of a homeobox cluster after genome duplication in teleosts (2006) Proc Natl Acad Sci U S A, 103 (27), pp. 10369-10372Newman, C.S., Krieg, P.A., The Xenopus bagpipe-related homeobox gene zampogna is expressed in the pharyngeal endoderm and the visceral musculature of the midgut (1999) Dev Genes Evol, 209 (2), pp. 132-134Nicolas, S., Caubit, X., Massacrier, A., Cau, P., Le Parco, Y., Two Nkx-3-related genes are expressed in the adult and regenerating central nervous system of the urodele Pleurodeles waltl (1999) Dev Genet, 24 (3-4), pp. 319-328Nishida, W., Nakamura, M., Mori, S., Takahashi, M., Ohkawa, Y., Tadokoro, S., Yoshida, K., Sobue, K., A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes (2002) J Biol Chem, 277 (9), pp. 7308-7317Pabst, O., Schneider, A., Brand, T., Arnold, H.H., The mouse Nkx2-3 homeodomain gene is expressed in gut mesenchyme during pre- and postnatal mouse development (1997) Dev Dyn, 209 (1), pp. 29-35Pascual-Anaya, J., D'Aniello, S., Garcia-Fernandez, J., Unexpectedly large number of conserved noncoding regions within the ancestral chordate Hox cluster (2008) Dev Genes Evol, 218 (11-12), pp. 591-597Patterson, K.D., Krieg, P.A., Hox11-family genes XHox11 and XHox11L2 in xenopus: XHox11L2 expression is restricted to a subset of the primary sensory neurons (1999) Dev Dyn, 214 (1), pp. 34-43Pennacchio, L.A., Ahituv, N., Moses, A.M., Prabhakar, S., Nobrega, M.A., Shoukry, M., Minovitsky, S., Rubin, E.M., In vivo enhancer analysis of human conserved non-coding sequences (2006) Nature, 444 (7118), pp. 499-502Pollard, S.L., Holland, P.W., Evidence for 14 homeobox gene clusters in human genome ancestry (2000) Curr Biol, 10 (17), pp. 1059-1062Postlethwait, J.H., The zebrafish genome: A review and msx gene case study (2006) Genome Dyn, 2, pp. 183-197Postlethwait, J.H., The zebrafish genome in context: Ohnologs gone missing (2007) J Exp Zoolog B Mol Dev Evol, 308 (5), pp. 563-577Qiu, M., Shimamura, K., Sussel, L., Chen, S., Rubenstein, J.L., Control of anteroposterior and dorsoventral domains of Nkx-6.1 gene expression relative to other Nkx genes during vertebrate CNS development (1998) Mech Dev, 72 (1-2), pp. 77-88Richardson, M.K., Crooijmans, R.P., Groenen, M.A., Sequencing and genomic annotation of the chicken (Gallus gallus) Hox clusters, and mapping of evolutionarily conserved regions (2007) Cytogenet Genome Res, 117 (1-4), pp. 110-119Rinkwitz-Brandt, S., Arnold, H.H., Bober, E., Regionalized expression of Nkx5-1, Nkx5-2, Pax2 and sek genes during mouse inner ear development (1996) Hear Res, 99 (1-2), pp. 129-138Santini, S., Boore, J.L., Meyer, A., Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters (2003) Genome Res, 13 (6), pp. 1111-1122Saudemont, A., Dray, N., Hudry, B., Le Gouar, M., Vervoort, M., Balavoine, G., Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis (2008) Dev Biol, 317 (2), pp. 430-443Schafer, K., Braun, T., Early specification of limb muscle precursor cells by the homeobox gene Lbx1h (1999) Nat Genet, 23 (2), pp. 213-216Schorderet, D.F., Nichini, O., Boisset, G., Polok, B., Tiab, L., Mayeur, H., Raji, B., Munier, F.L., Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome (2008) Am J Hum Genet, 82 (5), pp. 1178-1184Schubert, F.R., Dietrich, S., Mootoosamy, R.C., Chapman, S.C., Lumsden, A., Lbx1 marks a subset of interneurons in chick hindbrain and spinal cord (2001) Mech Dev, 101 (1-2), pp. 181-185Shimeld, S.M., McKay, I.J., Sharpe, P.T., The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube (1996) Mech Dev, 55 (2), pp. 201-210Spitz, F., Gonzalez, F., Duboule, D., A global control region defines a chromosomal regulatory landscape containing the HoxD cluster (2003) Cell, 113 (3), pp. 405-417Svensson, M.E., Haas, A., Evolutionary innovation in the vertebrate jaw: A derived morphology in anuran tadpoles and its possible developmental origin (2005) Bioessays, 27 (5), pp. 526-532Takatori, N., Butts, T., Candiani, S., Pestarino, M., Ferrier, D.E., Saiga, H., Holland, P.W., Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae (2008) Dev Genes Evol, 218 (11-12), pp. 579-590Tanaka, M., Kasahara, H., Bartunkova, S., Schinke, M., Komuro, I., Inagaki, H., Lee, Y., Izumo, S., Vertebrate homologs of tinman and bagpipe: Roles of the homeobox genes in cardiovascular development (1998) Dev Genet, 22 (3), pp. 239-249Tang, S.J., Hoodless, P.A., Lu, Z., Breitman, M.L., McInnes, R.R., Wrana, J.L., Buchwald, M., The Tlx-2 homeobox gene is a downstream target of BMP signalling and is required for mouse mesoderm development (1998) Development, 125 (10), pp. 1877-1887Taylor, J.S., Braasch, I., Frickey, T., Meyer, A., Van De Peer, Y., Genome duplication, a trait shared by 22000 species of ray-finned fish (2003) Genome Res, 13 (3), pp. 382-390Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Thisse, C., Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening (2004) Methods Cell Biol, 77, pp. 505-519Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res, 25 (24), pp. 4876-4882Tschopp, P., Tarchini, B., Spitz, F., Zakany, J., Duboule, D., Uncoupling time and space in the collinear regulation of Hox genes (2009) PLoS Genet, 5 (3), pp. e1000398Vavouri, T., Walter, K., Gilks, W.R., Lehner, B., Elgar, G., Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans (2007) Genome Biol, 8 (2), pp. R15Wang, W., Lo, P., Frasch, M., Lufkin, T., Hmx: An evolutionary conserved homeobox gene family expressed in the developing nervous system in mice and Drosophila (2000) Mech Dev, 99 (1), pp. 123-137Wang, W., Grimmer, J.F., Van De Water, T.R., Lufkin, T., Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx (2004) Dev Cell, 7 (3), pp. 439-453Watanabe, S., Kondo, S., Hayasaka, M., Hanaoka, K., Functional analysis of homeodomain-containing transcription factor Lbx1 in satellite cells of mouse skeletal muscle (2007) J Cell Sci, 120 (PT 23), pp. 4178-4187Wittbrodt, J., Meyer, A., Schartl, M., More genes in fish? (1998) Bioessays, 20, pp. 511-515Woolfe, A., Elgar, G., Organization of conserved elements near key developmental regulators in vertebrate genomes (2008) Adv Genet, 61, pp. 307-338Woolfe, A., Goodson, M., Goode, D.K., Snell, P., McEwen, G.K., Vavouri, T., Smith, S.F., Elgar, G., Highly conserved non-coding sequences are associated with vertebrate development (2005) PLoS Biol, 3 (1), pp. e7Woolfe, A., Goode, D.K., Cooke, J., Callaway, H., Smith, S., Snell, P., McEwen, G.K., Elgar, G., CONDOR: A database resource of developmentally associated conserved non-coding elements (2007) BMC Dev Biol, 7, p. 100Wotton, K.R., Mazet, F., Shimeld, S.M., Expression of FoxC, FoxF, FoxL1, and FoxQ1 genes in the dogfish Scyliorhinus canicula defines ancient and derived roles for Fox genes in vertebrate development (2008) Dev Dyn, 237 (6), pp. 1590-1603Wotton, K.R., Shimeld, S.M., Comparative genomics of vertebrate Fox cluster loci (2006) BMC Genomics, 7 (1), p. 271Wotton, K.R., Weierud, F.K., Dietrich, S., Lewis, K.E., Comparative genomics of Lbx loci reveals conservation of identical Lbx ohnologs in bony vertebrates (2008) BMC Evol Biol, 8, p. 171Yoshiura, K., Leysens, N.J., Reiter, R.S., Murray, J.C., Cloning, characterization, and mapping of the mouse homeobox gene Hmx1 (1998) Genomics, 50 (1), pp. 61-6
    corecore