25 research outputs found

    Genetic and biochemical evidence for redundant pathways leading to mycosporine-like amino acid biosynthesis in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024

    Get PDF
    Cyanobacteria have been widely reported to produce a variety of UV-absorbing mycosporine-like amino acids (MAAs). Herein, we reported production of the unusual MAA, mycosporine-glycine-alanine (MGA) in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using a newly developed UHPLC-DAD-MS/HRMS (ultra-high performance liquid chromatography-diode array detection-high resolution tandem mass spectrometry) method. MGA had previously been first identified in a red-algae, but S. torques-reginae strain ITEP-024 is the first cyanobacteria to be reported as an MGA producer. Herein, the chemical structure of MGA is fully elucidated from one-dimensional / two-dimensional nuclear magnetic resonance and HRMS data analyses. MAAs are unusually produced constitutively in S. torques-reginae ITEP-024, and this production was further enhanced following UV-irradiance. It has been proposed that MAA biosynthesis proceeds in cyanobacteria from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate. Annotation of a gene cluster encoded in the genome sequence of S. torques-reginae ITEP-024 supports these gene products could catalyse the biosynthesis of MAAs. However, addition of glyphosate to cultures of S. torques-reginae ITEP-024 abolished constitutive and ultra-violet radiation induced production of MGA, shinorine and porphyra-334. This finding supports involvement of the shikimic acid pathway in the biosynthesis of MAAs by this species.Peer reviewe

    Genomic and funcional analysis of the cyanobacterium Nostoc sp. CENA67 and characterization of its associated microbial community

    No full text
    Nostoc é um gênero cianobacteriano com distribuição ubíqua que tem importância em diversos ecossistemas. Contudo, poucos genomas estão atualmente disponíveis para esse gênero. Enquanto Nostoc spp. são as cianobactérias mais comumente relatadas em relações simbióticas com fungos, animais, plantas e outros organismos, associações com outros micro organismos não receberam atenção similar. Como consequência das fortes interações entre cianobactérias e heterótrofos, culturas não axênicas são geralmente obtidas no isolamento dessas bactérias, o que proporciona uma oportunidade interessante para o desenvolvimento tanto de estudos genômicos quanto metagenômicos. Este trabalho teve como objetivo investigar as características genômicas e funcionais da linhagem Nostoc sp. CENA67, isolada de terra preta antropogênica, bem como estudar sua comunidade associada. Para esse fim, células de uma cultura não axênica de Nostoc sp. CENA67 foram sequenciadas com as plataformas MiSeq e Ion PGM e analisados com ferramentas genômicas e metagenômicas. A linhagem CENA67 de fato pertence à família Nostocaceae e possui algumas características em comum com cianobactérias do gênero Nostoc, porém diverge em certos aspectos morfológicos e filogenéticos do grupo típico de Nostoc, sugerindo que seja representante de um novo táxon. Além disso, seu genoma apresenta diferenças em relação aos genomas atualmente disponíveis para cianobactérias relacionadas ao gênero. A mineração desse genoma revelou 31 agrupamentos gênicos hipoteticamente relacionados à síntese de metabólitos secundários, a maioria dos quais não mostrou similaridade significativa com agrupamentos conhecidos. A análise de um agrupamento gênico de microviridina desvendou uma maior diversidade de genes para precursores dessa molécula do que se acreditava anteriormente, sugerindo que um número considerável de variantes ainda está a ser descoberta. A análise taxonômica da comunidade associada confirmou a dominância de cianobactérias na cultura, mas também revelou a presença de grande número de gêneros microbianos que normalmente são capazes de fixar nitrogênio atmosférico e estabelecer simbiose com plantas, incluindo Mesorhizobium, Sinorhizobium e Starkeya, entre outros. Rascunhos genômicos foram obtidos para Bradyrhizobium diazoefficiens, Bradyrhizobium japonicum, Burkholderia lata e Hyphomicrobium nitrativorans. Todavia, genes para fixação de nitrogênio não foram detectados nesses genomas, apesar de serem encontrados no genoma da cianobactéria e no metagenoma da comunidade, o que sugere que algumas populações podem estar sob pressão de seleção para a perda da capacidade de fixação de nitrogênio, provavelmente devido a este nutriente estar sendo fornecido pelo organismo mais abundante nesta comunidade, a cianobactéria. A análise funcional indicou vias exclusivas tanto à cianobactéria quanto à comunidade associada, e sugeriu a complementariedade de certos metabolismos. Os resultados possibilitam o aumento do conhecimento sobre a diversidade molecular e química do filo Cyanobacteria e levantam possíveis interações com micro organismos simbiontesNostoc is a cyanobacterial genus with ubiquitous distribution that is important in several ecosystems. However, few genomes are currently available for this genus. While Nostoc spp. are the most commonly reported cyanobacteria in symbiotic relationship with fungi, animals, plants, and other organisms, associations with other microorganisms have not received similar attention. As a consequence of tight interactions between cyanobacteria and heterotrophs, non-axenic cultures are usually achieved in the isolation of these bacteria, which provides an interesting opportunity for carrying out both genomic as metagenomic studies. This work aimed to investigate the genomic and functional characteristics of the strain Nostoc sp. CENA67, isolated from anthropogenic dark earth, and to study its associated community. For this purpose, cells from a non-axenic culture of Nostoc sp. CENA67 were sequenced with the platforms MiSeq and Ion PGM and analyzed with genomic and metagenomic tools. The strain CENA67 indeed belongs to the family Nostocaceae and presents some characteristics in common with cyanobacteria of the genus Nostoc, but diverges in certain morphological and phylogenetic aspects of the typical Nostoc group, suggesting that it is a representative of a new taxon. In addition, its genome presents differences in relation to the genomes currently available for cyanobacteria related to this genus. Genome mining revealed 31 gene clusters hypothetically related to the synthesis of secondary metabolites, most of which did not show significant similarity to known clusters. The analysis of a microviridin gene cluster unveiled a larger diversity of precursor genes for this molecule than was previously believed, suggesting that a considerable number of variants is still to be found. The taxonomic analysis of the associated community confirmed the dominance of cyanobacteria in the culture, but also revealed the presence of a great number of microbial genera that are usually capable of fixing atmospheric nitrogen and establishing symbiosis with plants, including Mesorhizobium, Sinorhizobium, and Starkeya, among others. Genomic drafts were obtained for Bradyrhizobium diazoefficiens, Bradyrhizobium japonicum, Burkholderia lata, and Hyphomicrobium nitrativorans. Nevertheless, genes for nitrogen fixation were not detected in these genomes, despite being found in the cyanobacterial genome and the community metagenome, suggesting that some populations might be under selection pressure for the loss of the ability to fix nitrogen, probably due to this nutrient being provided for the most abundant organism in this culture, the cyanobacterium. Functional analysis indicated pathways exclusive both to the cyanobacterium as to the associated community, and suggested the complementarity of certain metabolisms. The results allow the increase of the knowledge about the molecular and chemical diversity of the phylum Cyanobacteria and raise possible interactions with symbiotic microorganism

    Polyphasic analysis of cyanobacteria from the phyllosphere of Avicennia schaueriana

    No full text
    A superfície das folhas de árvores (filosfera) oferece uma grande área de habitat para os micro-organismos, mas constitui um ambiente extremo. O desenvolvimento de comunidades microbianas é dependente de fonte de carbono e de certos nutrientes essenciais inorgânicos comumente liberados pela planta para a sua superfície. No entanto, um grupo especial de bactérias, Cyanobacteria, é menos dependente da planta para sua nutrição, pois vários destes organismos são autotróficos para carbono e nitrogênio. Portanto, Cyanobacteria é particularmente interessante para se avaliar neste ambiente. Neste estudo, linhagens de cianobactérias presentes na superfície das folhas secretoras de sal da planta de manguezal Avicennia schaueriana foram isoladas e caracterizadas morfológica, molecular e ultraestruturalmente. O potencial destes isolados para sintetizar moléculas bioativas também foi avaliado. Para isso, folhas de A. schaueriana foram coletadas em um manguezal com histórico de contaminação por petróleo, localizado próximo ao Rio Iriri, em Bertioga-SP. O isolamento das cianobactérias foi realizado usando quatro meios de cultura (BG-11, SWBG-11, BG-11o e SWBG-11o) e dois métodos: a) esfregaço das folhas nos meios sólidos em placas de Petri; e b) submersão das folhas em frascos Erlenmeyer contendo meios líquidos. Após a obtenção de culturas puras, os isolados foram crescidos em meios líquidos, as células foram concentradas e usadas para extração de DNA genômico. O gene de RNAr 16S de cada isolado foi amplificado por PCR usando iniciadores específicos (27F/1494Rc), clonado e sequenciado. As sequências de RNAr 16S foram usadas na construção de árvore filogenética. O potencial dos isolados para sintetizar moléculas bioativas foi acessado pela amplificação de PCR usando iniciadores específicos para sequências gênicas codificadoras de peptídeo sintetase (NRPS), policetídeo sintase (PKS), cianopeptolina, aeruginosina, saxitoxina, anatoxina-a/homoanatoxina-a e microcistina. Como resultado, trinta morfotipos foram isolados em meio líquido e quatro em meio sólido. Estes morfotipos foram identificados como pertencentes a quatro ordens diferentes (12 Nostocales, 9 Pseudanabaenales, 8 Chroococcales e 5 Oscillatoriales). Entre os isolados, alta abundância de linhagens potencialmente fixadoras de N2 foi encontrada, indicando que elas possivelmente são uma importante fonte de nitrogênio neste habitat. As sequências do gene de RNAr 16S de vinte e quatro isolados ficaram distribuídas em onze clados distintos na árvore filogenética e mostraram baixas similaridades com gêneros já descritos. Na análise da ultraestrutura destas linhagens, destacou-se a presença de grânulos de elevado volume em uma cianobactéria unicelular e de um arranjo de tilacoides incomum em uma cianobactéria filamentosa homocitada com morfologia aparentemente simples. Sequências gênicas codificadoras de PKS foram detectadas em dezessete linhagens, de aeruginosina em sete linhagens e de cianopeptolina em dez linhagens. Entretanto, sequências gênicas codificadoras de NRPS e das cianotoxinas microcistina, saxitoxina e anatoxina-a/homoanatoxina-a não foram detectadas. A superfície das folhas de A. schaueriana apresenta elevado número de cianobactérias não descritas, provavelmente um resultado das condições peculiares tanto da filosfera quanto do manguezal estudado. Este é o primeiro relato de isolamento de cianobactérias da superfície de folhas de A. schauerianaThe tree leaf surface (phyllosphere) offer a large habitat area for microorganisms but constitute an extreme environment. The development of microbial communities is dependent of carbon source and certain essential inorganic nutrients commonly released from the plant to its surface. However, a special group of bacteria, Cyanobacteria, is less dependent of the plant for their nutrition since several of these organisms are autotrophic for carbon and nitrogen. Therefore, cyanobacteria are particularly interesting to be evaluated in this environment. In this study, cyanobacterial strains present in the salt-excreting leaf surface of the mangrove Avicennia schaueriana were isolated and morphologically, molecularly and ultrastructurally characterized. The potential of these isolates to synthesize bioactive molecules was also evaluated. To this purpose, A. schaueriana leaves were collected in a mangrove with history of oil contamination located near to the Iriri river in Bertioga-SP. The isolation of cyanobacteria was achieved using four culture media (BG-11, SWBG-11, BG-11o and SWBG-11o) and two methods: a) smearing of leaves into solid media in Petri dishes; and b) submersion of leaves in Erlenmeyer flasks containing liquid media. After obtaining pure cultures, the isolates were grown into liquid media, and the cells were concentrated and used for genomic DNA extraction. The gene of rRNA 16S of each isolate was amplified by PCR using specific primers (27F/1494Rc), cloned and sequenced. The 16S rRNA sequences were used for the construction of a phylogenetic tree. The potential of the isolates to synthesize bioactive molecules was assessed by PCR amplification using primers specific for gene sequences encoding non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS), cyanopeptolin, aeruginosin, saxitoxin, anatoxin-a/homoanatoxin-a and microcystin. As results, thirty morphotypes were isolated in liquid media and four in solid media. These morphotypes were identified as belonging to four different orders (12 Nostocales, 9 Pseudanabaenales, 8 Chroococcales and 5 Oscillatoriales). Among the isolates, it was found a high abundance of potentially N2-fixing strains, what indicates that they possibly are an important source of nitrogen in this habitat. The 16S rRNA gene sequences of twenty-four isolates were distributed into eleven distinct clades in the phylogenetic tree and showed low similarities with described genera. In the ultrastructural analyses of these strains, the highlight was the presence of granules of high volume in a unicellular cyanobacterium and an unusual thylakoid arrangement in a homocytous filamentous cyanobacterium with apparently simple morphology. Gene sequences encoding for PKS were detected in seventeen strains, for aeruginosine in seven strains and cyanopeptolin in ten strains. Gene sequences encoding for NRPS and for the cyanotoxins microcystin, saxitoxin, and anatoxin-a/homoanatoxin-a were not found. The leaf surface of A. schaueriana presents a high number of undescribed cyanobacteria, probably as a result of the peculiar conditions of the phyllosphere and the studied mangrove. This is the first report of isolation of cyanobacteria from the leaf surface of A. schauerian

    Mining of Cyanobacterial Genomes Indicates Natural Product Biosynthetic Gene Clusters Located in Conjugative Plasmids

    Get PDF
    Microbial natural products are compounds with unique chemical structures and diverse biological activities. Cyanobacteria commonly possess a wide range of biosynthetic gene clusters (BGCs) to produce natural products. Although natural product BGCs have been found in almost all cyanobacterial genomes, little attention has been given in cyanobacterial research to the partitioning of these biosynthetic pathways in chromosomes and plasmids. Cyanobacterial plasmids are believed to disperse several natural product BGCs, such as toxins, by plasmids through horizontal gene transfer. Therefore, plasmids may confer the ability to produce toxins and may play a role in the evolution of diverse natural product BGCs from cyanobacteria. Here, we performed an analysis of the distribution of natural product BGCs in 185 genomes and mapped the presence of genes involved in the conjugation in plasmids. The 185 analyzed genomes revealed 1817 natural products BGCs. Individual genomes contained 1-42 biosynthetic pathways (mean 8), 95% of which were present in chromosomes and the remaining 5% in plasmids. Of the 424 analyzed cyanobacterial plasmids, 12% contained homologs of genes involved in conjugation and natural product biosynthetic pathways. Among the biosynthetic pathways in plasmids, manual curation identified those to produce aeruginosin, anabaenopeptin, ambiguine, cryptophycin, hassallidin, geosmin, and microcystin. These compounds are known toxins, protease inhibitors, odorous compounds, antimicrobials, and antitumorals. The present study provides in silico evidence using genome mining that plasmids may be involved in the distribution of natural product BGCs in cyanobacteria. Consequently, cyanobacterial plasmids have importance in the context of biotechnology, water management, and public health risk assessment. Future research should explore in vivo conjugation and the end products of natural product BGCs in plasmids via chemical analyses.Peer reviewe

    Kryptousia macronema gen. nov., sp. nov. and Kryptousia microlepis sp. nov., nostocalean cyanobacteria isolated from phyllospheres

    No full text
    Tropical ecosystems worldwide host very diverse microbial communities, but are increasingly threatened by deforestation and climate change. Thus, characterization of biodiversity in these environments, and especially of microbial communities that show unique adaptations to their habitats, is a very urgent matter. Information about representatives of the phylum Cyanobacteria in tropical environments is scarce, even though they are fundamental primary producers that help other microbes to thrive in nutrient-depleted habitats, including phyllospheres. In order to increase our knowledge of cyanobacterial diversity, a study was conducted to characterize isolates from Avicennia schaueriana and Merostachys neesii leaves collected at a mangrove and an Atlantic forest reserve located at the littoral of São Paulo state, south-east Brazil. The morphological, ultrastructural, phylogenetic, molecular and ecological features of the strains led to the recognition of the new genus Kryptousia, comprising two new species, Kryptousia macronema gen. nov., sp. nov. and Kryptousia microlepis sp. nov., described here according to the International Code of Nomenclature for algae, fungi and plants. The new genus and species were classified in the nostocalean family Tolypotrichaceae. This finding advances knowledge on the microbial diversity of South American ecosystems and sheds further light on the systematics of cyanobacteria

    Unraveling a Lignocellulose-Decomposing Bacterial Consortium from Soil Associated with Dry Sugarcane Straw by Genomic-Centered Metagenomics

    No full text
    Second-generation biofuel production is in high demand, but lignocellulosic biomass’ complexity impairs its use due to the vast diversity of enzymes necessary to execute the complete saccharification. In nature, lignocellulose can be rapidly deconstructed due to the division of biochemical labor effectuated in bacterial communities. Here, we analyzed the lignocellulolytic potential of a bacterial consortium obtained from soil and dry straw leftover from a sugarcane milling plant. This consortium was cultivated for 20 weeks in aerobic conditions using sugarcane bagasse as a sole carbon source. Scanning electron microscopy and chemical analyses registered modification of the sugarcane fiber’s appearance and biochemical composition, indicating that this consortium can deconstruct cellulose and hemicellulose but no lignin. A total of 52 metagenome-assembled genomes from eight bacterial classes (Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidia, Cytophagia, Gammaproteobacteria, Oligoflexia, and Thermoleophilia) were recovered from the consortium, in which ~46% of species showed no relevant modification in their abundance during the 20 weeks of cultivation, suggesting a mostly stable consortium. Their CAZymes repertoire indicated that many of the most abundant species are known to deconstruct lignin (e.g., Chryseobacterium) and carry sequences related to hemicellulose and cellulose deconstruction (e.g., Chitinophaga, Niastella, Niabella, and Siphonobacter). Taken together, our results unraveled the bacterial diversity, enzymatic potential, and effectiveness of this lignocellulose-decomposing bacterial consortium

    Toxin-Antitoxin Gene Pairs Found in Tn3 Family Transposons Appear To Be an Integral Part of the Transposition Module.

    No full text
    Much of the diversity of prokaryotic genomes is contributed by the tightly controlled recombination activity of transposons (Tns). The Tn3 family is arguably one of the most widespread transposon families. Members carry a large range of passenger genes incorporated into their structures. Family members undergo replicative transposition using a DDE transposase to generate a cointegrate structure which is then resolved by site-specific recombination between specific DNA sequences (res) on each of the two Tn copies in the cointegrate. These sites also carry promoters controlling expression of the recombinase and transposase. We report here that a number of Tn3 members encode a type II toxin-antitoxin (TA) system, typically composed of a stable toxin and a labile antitoxin that binds the toxin and inhibits its lethal activity. This system serves to improve plasmid maintenance in a bacterial population and, until recently, was believed to be associated with bacterial persistence. At least six different TA gene pairs are associated with various Tn3 members. Our data suggest that several independent acquisition events have occurred. In contrast to most Tn3 family passenger genes, which are generally located away from the transposition module, the TA gene pairs abut the res site upstream of the resolvase genes. Although their role when part of Tn3 family transposons is unclear, this finding suggests a potential role for the embedded TA in stabilizing the associated transposon with the possibility that TA expression is coupled to expression of transposase and resolvase during the transposition process itself.IMPORTANCE Transposable elements (TEs) are important in genetic diversification due to their recombination properties and their ability to promote horizontal gene transfer. Over the last decades, much effort has been made to understand TE transposition mechanisms and their impact on prokaryotic genomes. For example, the Tn3 family is ubiquitous in bacteria, molding their host genomes by the paste-and-copy mechanism. In addition to the transposition module, Tn3 members often carry additional passenger genes (e.g. conferring antibiotic or heavy metal resistance and virulence), and three were previously known to carry a toxin-antitoxin (TA) system often associated with plasmid maintenance; however, the role of TA systems within the Tn3 family is unknown. The genetic context of TA systems in Tn3 members suggests that they may play a regulatory role in ensuring stable invasion of these Tns during transposition.info:eu-repo/semantics/publishe
    corecore