71 research outputs found

    High molecular weight (HMW) dissolved organic matter (DOM) in seawater : chemical structure, sources and cycling

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 1999The goal of this thesis was to use high resolution analytical techniques coupled with molecular level analyses to chemically characterize high molecular weight (> 1 k Da (HMW)) dissolved organic matter (DOM) isolated from seawater in an attempt to provide new insights in to the cycling of DOM in the ocean. While a variety of sites spanning different environments (fluvial, coastal and oceanic) and ocean basins were examined, the chemical structure of the isolated HMW DOM varied little at both the polymer and monomer levels. All samples show similar ratios of carbohydrate: acetate: lipid carbon (80±4: 10±2:9±4) indicating that these biochemicals are present within a family of related polymers. The carbohydrate fraction shows a characteristic distribution of seven major neutral monosaccharides: rhamnose, fucose, arabinose, xylose, mannose, glucose and galactose; and additionally contains Nacetylated amino sugars as seen by Nuclear Magnetic Resonance Spectroscopy (NMR). This family of compounds, consisting of a specifically linked polysaccharide backbone that is acylated at several positions, has been termed acylated polysaccharides (APS) by our laboratory. APS accounts for 50% of the carbon in HMW DOM isolated from the surface ocean and 20% of the carbon in HMW DOM isolated from the deep ocean. In order to identify a possible source for APS three species of phytoplankton, Thalassiossira weissflogii, Emiliania huxleyi and Phaeocystis, were cultured in seawater and their HMW DOM exudates examined by variety of analytical techniques. Both the T. weissflogii and E. huxleyi exudates contain compounds that resemble APS indicating that phytoplankton are indeed a source of APS to the marine environment. Furthermore, the degradation of the T. weissflogii exudate by a natural assemblage of microorganisms indicates that the component resembling APS is more resistant to microbial degradation compared to other polysaccharides present in the culture. Molecular level analyses show the distribution of monosaccharides to be conservative in surface and deep waters suggesting that APS is present throughout the water column. In order to determine the mechanism by which APS is delivered to the deep ocean the Δ14C value of APS in the deep ocean was compared to the Δ14C value of the dissolved inorganic carbon (DIC) at the same depth. If the formation of deep water is the dominant mode of transport then both the DIC and APS will have similar Δ14C values. However, if APS is injected into the deep ocean from particles or marine snow then the Δ14C value of APS will be higher than the DIC at the same depth. Our results indicate that APS in the deep Pacific Ocean carries a modem Δ14C value and is substantially enriched in 14C relative to the total HMW DOM and the DIC at that depth. Thus, particle dissolution appears to be the most important pathway for the delivery of APS to the deep ocean.This thesis was funded by a grant from the US Department of Energy, Ocean Margins Program

    Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter.

    Get PDF
    The ocean's biota sequester atmospheric carbon dioxide (CO2) in part by producing dissolved organic matter (DOM) that persists in the ocean for millennia. This long-term accumulation of carbon may be facilitated by abiotic and biotic production of chemical structures that resist degradation, consequently contributing disproportionately to refractory DOM. Compounds that are selectively preserved in seawater were identified in solid-phase extracted DOM (PPL-DOM) using comprehensive gas chromatography (GC) coupled to mass spectrometry (MS). These molecules contained cyclic head groups that were linked to isoprenoid tails, and their overall structures closely resembled carotenoid degradation products (CDP). The origin of these compounds in PPL-DOM was further confirmed with an in vitro β-carotene photooxidation experiment that generated water-soluble CDP with similar structural characteristics. The molecular-level identification linked at least 10% of PPL-DOM carbon, and thus 4% of total DOM carbon, to CDP. Nuclear magnetic resonance spectra of experimental CDP and environmental PPL-DOM overlapped considerably, which indicated that even a greater proportion of PPL-DOM was likely composed of CDP. The CDP-rich DOM fraction was depleted in radiocarbon (14C age > 1500 years), a finding that supports the possible long-term accumulation of CDP in seawater. By linking a specific class of widespread biochemicals to refractory DOM, this work provides a foundation for future studies that aim to examine how persistent DOM forms in the ocean

    Recent increases in water column denitrification in the seasonally suboxic bottom waters of the Santa Barbara Basin

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6786-6795, doi:10.1029/2019GL082075.Denitrification in the anoxic sediments of the Santa Barbara Basin has been well documented in the historic and modern record, but the regulation of and frequency with which denitrification occurs in the overlying water column are less understood. Since 2004, the magnitude and speciation of redox active nitrogen species in bottom waters have changed markedly. Most notable are periods of decreased nitrate and increased nitrite concentrations. Here we examine these changes in nitrogen cycling as recorded by the stable isotopes of dissolved nitrate from 2010–2016. When compared to previous studies, our data identify an increase in water column denitrification in the bottom waters of the basin. Observations from inside the basin as well as data from the wider California Current Ecosystem implicate a long‐term trend of decreasing oxygen concentrations as the driver for these observed changes, with ramifications for local benthic communities and regional nitrogen loss.We thank CalCOFI and Shonna Dovel for sample collection and two anonymous reviewers for improving the manuscript. Thanks also to Daniel Sigman for useful discussions, and Zoe Sandwith and Jen Karolewski for help with sample analysis. Data sets presented here were supported in part by CCE‐LTER augmented funding (NSF grant OCE‐1026607). Additional funding came from the Edna Bailey Sussman Foundation and the San Diego Foundation Blasker Environment grant. All data can be accessed at http://calcofi.org and https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets. SDW acknowledges the support of a fellowship through the Hanse‐Wissenschaftskolleg (Institute for Advanced Studies).2019-12-1

    Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California Bight.

    Get PDF
    Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation

    Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in James, B., de Vos, A., Aluwihare, L., Youngs, S., Ward, C., Nelson, R., Michel, A., Hahn, M., & Reddy, C. Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire. ACS Environmental Au, 2(5), (2022): 467–479, https://doi.org/10.1021/acsenvironau.2c00020.In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or “nurdles” (∼1680 tons), littering the country’s coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. Additional support was provided by the WHOI Marine Microplastics Catalyst Program, the WHOI Marine Microplastics Innovation Accelerator Program, the WHOI Investment in Science Fund, the March Marine Initiative (a program of March Limited, Bermuda), The Seaver Institute, Gerstner Philanthropies, the Wallace Research Foundation, the Richard Saltonstall Charitable Foundation, the Harrison Foundation, Hollis and Ermine Lovell Charitable Foundation, and the Richard Grand Foundation. AdV was supported by funding from the Schmidt Foundation

    Perspectives on Chemical Oceanography in the 21st century: Participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO

    Get PDF
    The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the field

    Deciphering ocean carbon in a changing world

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 113 (2016): 3143-3151, doi:10.1073/pnas.1514645113.Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.Support was provided by National Science Foundation grants OCE1356010, OCE1154320, and OCE1356890, and Gordon and Betty Moore Foundation Grant #3304

    Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network

    Get PDF
    Organic matter (OM) dynamics determine how much carbon is stored in ecosystems, a service that modulates climate. We synthesized research from across the US Long-Term Ecological Research (LTER) Network to assemble a conceptual model of OM dynamics that is consistent with inter-disciplinary perspectives and emphasizes vulnerability of OM pools to disturbance. Guided by this conceptual model, we identified unanticipated patterns and long-term trends in processing and transport of OM emerging from terrestrial, freshwater, wetland, and marine ecosystems. Cross-ecosystem synthesis combined with a survey of researchers revealed several themes: 1) strong effects of climate change on OM dynamics, 2) surprising patterns in OM storage and dynamics resulting from coupling with nutrients, 3) characteristic and often complex legacies of land use and disturbance, 4) a significant role of OM transport that is often overlooked in terrestrial ecosystems, and 5) prospects for reducing uncertainty in forecasting OM dynamics by incorporating the chemical composition of OM. Cross-fertilization of perspectives and approaches across LTER sites and other research networks can stimulate the comprehensive understanding required to support large-scale characterizations of OM budgets and the role of ecosystems in regulating global climate
    corecore