27 research outputs found

    Updating low-profile FRP deck FE model using experimental modal analysis

    Get PDF
    A FRP composite cargo trailer was developed for the U.S. Marine Corps using the existing Prodeck4 FRP bridge deck as a trailer bed. Detailed finite element analysis and experimental evaluation was carried out on the FRP trailer. The FRP deck used is a new system and has orthotropic material properties, therefore an FE model of deck that is validated through experimental data will ensure confidence in results obtained from the FE model. Experimental modal analysis (EMA) was used to verify and update the FE model of the FRP deck.;A FE model of FRP deck was built in ANSYSRTM and the frequencies and mode shapes of the deck were evaluated. The FE model results were used in planning the modal tests to determine the best impact, best suspension, and the best accelerometer locations. (Abstract shortened by UMI.)

    Iddq testing of a CMOS 10-bit charge scaling digital-to-analog converter

    Get PDF
    This work presents an effective built-in current sensor (BICS), which has a very small impact on the performance of the circuit under test (CUT). The proposed BICS works in two-modes the normal mode and the test mode. In the normal mode the BICS is isolated from the CUT due to which there is no performance degradation of the CUT. In the testing mode, our BICS detects the abnormal current caused by permanent manufacturing defects. Further more our BICS can also distinguish the type of defect induced (Gate-source short, source-drain short and drain-gate short). Our BICS requires neither an external voltage source nor current source. Hence the BICS requires less area and is more efficient than the conventional current sensors. The circuit under test is a 10-bit digital to analog converter using charge-scaling architecture

    Lactate-Mediated Epigenetic Reprogramming Regulates Formation of Human Pancreatic Cancer-Associated Fibroblasts

    Get PDF
    Even though pancreatic ductal adenocarcinoma (PDAC) is associated with fibrotic stroma, the molecular pathways regulating the formation of cancer associated fibroblasts (CAFs) are not well elucidated. An epigenomic analysis of patient-derived and de-novo generated CAFs demonstrated widespread loss of cytosine methylation that was associated with overexpression of various inflammatory transcripts including CXCR4. Co-culture of neoplastic cells with CAFs led to increased invasiveness that was abrogated by inhibition of CXCR4. Metabolite tracing revealed that lactate produced by neoplastic cells leads to increased production of alpha-ketoglutarate (aKG) within mesenchymal stem cells (MSCs). In turn, aKG mediated activation of the demethylase TET enzyme led to decreased cytosine methylation and increased hydroxymethylation during de novo differentiation of MSCs to CAF. Co-injection of neoplastic cells with TET-deficient MSCs inhibited tumor growth in vivo. Thus, in PDAC, a tumor-mediated lactate flux is associated with widespread epigenomic reprogramming that is seen during CAF formation

    by

    No full text
    I would like to dedicate my work to my parents, Mr. and Mrs. A.Sreedhar Rao and my brother Seshu, for their constant prayers and encouragement throughout my life. I am very grateful to my advisor Dr. A. Srivastava for his guidance, patience and understanding throughout this work. His suggestions, discussions and constant encouragement have helped me to get a deep insight in the field of VLSI design. my committee. I would like to thank Dr. P. K. Ajmera and Dr. Martin Feldman for being a part of I am very thankful to Electrical Engineering Department, for supporting me financially during my stay at LSU. I would like to thank my friend Miss. Chandra Srinivasan for her constant love and support for me through out my life. I take this opportunity to thank my friends Anand, Uday, Vijay and Harish for their help and encouragement at times I needed them. I would also like to thank all my friends here who made my stay at LSU an enjoyable and a memorable one. Last of all I thank GOD for keeping me in good health and spirits throughou

    Simultaneous presence of fhs and purT genes is disadvantageous for the fitness of Escherichia coli growth

    No full text
    In bacteria, alternate mechanisms are known to synthesize N-10-formyltetrahydrofolate (N10-formyl-THF) and formyl glycinamide ribotide (fGAR), which are important in purine biosynthesis. In one of the mechanisms, a direct transfer of one carbon unit from formate allows Fhs to convert tetrahydrofolate to N-10-formyl-THF, and PurT to convert glycinamide ribotide (GAR) to fGAR. Our bioinformatics analysis of fhs and purT genes (encoding Fhs and PurT) showed that in a majority of bacteria (similar to 94%), their presence was mutually exclusive. A large number of organisms possessing fhs lacked purT and vice versa. The phenomenon is so penetrating that even within a genus (Bacillus) if a species possessed fhs it lacked purT and vice versa. To investigate physiological importance of this phenomenon, we used Escherichia coli, which naturally lacks fhs (and possesses purT) as model. We generated strains, which possessed fhs and purT genes in singles or together. Deletion of purT from E. coli in the presence or absence of fhs did not confer a detectable growth disadvantage in pure cultures. However, growth competition assays revealed that the strains possessing either of the single genes outcompeted those possessing both the genes suggesting that mutual exclusion of purT and fhs in organisms confers fitness advantage in mixed cultures

    One-Carbon Metabolic Pathway Rewiring in Escherichia coli Reveals an Evolutionary Advantage of 10-Formyltetrahydrofolate Synthetase (Fhs) in Survival under Hypoxia

    No full text
    In cells, N-10-formyltetrahydrofolate (N-10-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N-10-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (Delta folD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N-10-fTHF in the Delta folD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N-10-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The Delta folD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria

    Physiological role of FolD (methylenetetrahydrofolate dehydrogenase), FchA (methenyltetrahydrofolate cyclohydrolase) and Fhs (formyltetrahydrofolate synthetase) from Clostridium perfringens in a heterologous model of Escherichia coli

    No full text
    Most organisms possess bifunctional FolD 5,10-methylenetetrahydrofolate (5,10-CH2-THF) dehydrogenase-cyclohydrolase] to generate NADPH and 10-formyltetrandrofolate (10-CHO-THF) required in various metabolic steps. In addition, some organisms including Clostridium perfringens possess another protein, Fhs (formyltetrahydrofolate synthetase), to synthesize 10-CHO-THF. Here, we show that unlike the bifunctional FolD of Escherichia coli (Eco FolD), and contrary to its annotated bifunctional nature, C. perfringens FolD (Cpe FoID) is a monofunctional 5,10-CH2-THF dehydrogenase. The dehydrogenase activity of Cpe FoID is about five times more efficient than that of Eco FolD. The 5,10-methenyltetrahydrofolate (5,10-CH+-THF) cyclohydrolase activity in C. perfringens is provided by another protein, FchA (5,10-CH+-THF cyclohydrolase), whose cyclohydrolase activity is similar to 10 times more efficient than that of Eco FolD. Kinetic parameters for Cpe Fhs were also determined for utilization of all of its substrates. Both Cpe FoID and Cpe FchA are required to substitute for the single bifunctional FolD in E. coli. The simultaneous presence of Cpe FoID and Cpe FchA is also necessary to rescue an E coli folD deletion strain (harbouring Cpe Fhs support) for its formate and glycine auxotrophies, and to alleviate its susceptibility to trimethoprim (an antifolate drug) or UV light. The presence of the three clostridial proteins (FolD, FchA and Fhs) is required to maintain folate homeostasis in the cell
    corecore