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ABSTRACT 

UPDATING LOW-PROFILE FRP DECK FE MODEL 

USING EXPERIMENTAL MODAL ANALYSIS 
 

Srinivas Aluri 

 

A FRP composite cargo trailer was developed for the U.S. Marine Corps using 
the existing Prodeck4 FRP bridge deck as a trailer bed. Detailed finite element 
analysis and experimental evaluation was carried out on the FRP trailer. The FRP 
deck  used is a new system and has orthotropic material properties, therefore an 
FE model of deck that is validated through experimental data will ensure 
confidence in results obtained from the FE model. Experimental modal analysis 
(EMA) was used to verify and update the FE model of the FRP deck. 
        A FE model of FRP deck was built in ANSYS® and the frequencies and 
mode shapes of the deck were evaluated. The FE model results were used in 
planning the modal tests to determine the best impact, best suspension, and the 
best accelerometer locations. The test setup was designed for the FRP deck based 
on the test planning results. Single input single output test was conducted on the 
FRP deck using an impact hammer and an accelerometer. Appropriate signal 
processing was performed, using LabVIEW VIs written for this purpose, on the 
acquired data to obtain the Frequency Response Functions (FRFs) for 112 FRF 
deck locations. A global curve fitting method known as ‘Rational Fraction 
Polynomial’ method was applied to extract the frequencies, mode shapes, and 
modal damping from the FRFs.  
    The various modes of vibration of FRP deck obtained from FE and EMA were 
correlated using  Modal Assurance Criteria (MAC). The frequencies of correlated 
mode pairs of FE and EMA were compared and it was found that the difference 
was in the range of ~26-40%. Visual observation of the mode shapes of both FE 
and EMA revealed that the transverse stiffness and torsional stiffness of the FRP 
deck used in FE was lower than the actual FRP deck, thereby leading to lower 
frequencies in FE model when compared to correlated mode pair in EMA. The 
stiffness values, joint thicknesses were updated based on static test results and 
visual observation and the modal analysis was repeated including realistic 
boundary conditions on the FE model of the FRP deck. Comparison of results 
from FE model and EMA revealed a much better correlation of frequencies with 
a reduced error range of ~1-5%. The FE model does not predict two additional 
modes of the FRP deck (obtained through EMA). 



 iii 

     The frequencies and mode shapes of first two modes of vibration in FE and 
EMA have excellent correlation. Few other modes of FE and EMA also correlate 
well, however, the FE model does not predict two modes of vibration of the FRP 
deck. The updated FE model can be used to predict the dynamic response of the 
FRP deck in all cases where the response is dominated by the first two modes of 
vibrations. 
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CHAPTER 1 - INTRODUCTION 

1.1 Background 

Fiber reinforced polymer (FRP) composites are finding increasing use in 

structural and bridge infrastructures. Bridge decks are one area where the 

advantages of FRP composites can be fully utilized. Constructed Facilities Center 

(CFC) at West Virginia University has been in the forefront in developing FRP 

composite bridge decks and along with West Virginia Department of 

Transportation and Federal Highway Administration was instrumental in 

building several FRP deck bridges in the state of West Virginia.  

 

First generation FRP deck (Trade name - Superdeck™) developed at West 

Virginia University was made with E-glass fabrics and vinylester resin weighing 

about 22 lb/ft2.  The self weight of the first generation deck was only about 1/6th 

of comparable 8˝ reinforced concrete deck. However, there was a need to reduce 

the weight of the deck further to make the FRP bridge decks cost-competitive 

with conventional bridge deck materials.  

 

Working towards the goal of reducing FRP deck costs, CFC developed a low 

profile FRP bridge deck which has a self weight of 11 lb/ft2. The low profile deck 

is being manufactured by Bedford Reinforced Plastic Inc., PA and commercially 
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sold as Prodeck 4 (Figure 1.1). Prodeck 4 is built using E-glass fabrics and 

vinylester resin using the pultrusion process.  It is designed primarily as bridge 

deck to carry AASHTO HS-25 loading for 4 ft stringer spacing.  

 

 

Figure 1.1  Prodeck 4 Module 

 

Prior to installing Prodeck 4 on bridges, extensive static and fatigue tests were 

conducted on deck modules and decks [1], [2], [3] to evaluate its strength, 

stiffness and durability.  

 

In 2004, Constructed Facilities Center along with Systems & Electronics Inc, a full 

service supplier of defense products and supplies to U.S. Military, have started 

developing a FRP composite cargo trailer for the Medium Tactical Vehicle 

Replacement (MTVR). The proposed trailer a.k.a. MTVR-T will replace the 

current M105, M149 and M353 trailers. Figure 2 illustrates the initial design of 

the MTVR-T as proposed by SEI, Inc.  
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Figure 1.2  Proposed MTVR-T Design 

 

CFC proposed to use the Prodeck 4 as a decking system for the MTVR-T instead 

of developing a completely new decking system, which would entail exorbitant 

development, tooling and manufacturing costs.  

 

The initial task in the development of the trailer involved building a finite 

element (FE) model in ANSYS® of the FRP deck and the support assembly. The 

FE model will be used to perform stress analysis on the trailer for different load 

cases. The Prodeck 4 module is a new system and has orthotropic material 

properties, therefore an FE model that is validated through experimental data 

will ensure confidence in results obtained from the FE model. Experimental 

modal analysis (EMA) can be an effective tool in validating the FE model. EMA 



 4 

has three different stages: 1) test planning, 2) testing and post-processing of data, 

and 3) modal analysis (or curve fitting) of any structure. The modal parameters 

(frequencies, mode shapes, and damping ratios) are obtained from any EMA, 

which can be compared to the corresponding modal parameters obtained using 

FE analysis.  

 

1.2 Objective 

The objective of this research is to update the FE model using the experimental 

modal analysis data. Specifically the objectives are to:  

 

1) Develop a FE model for Prodeck 4 and perform modal analysis to obtain 

the theoretical frequencies and mode shapes. 

2) Conduct a modal test on Prodeck 4 and extract the frequencies, mode 

shapes and damping from the test data using curve fitting.  

3) Update the FE model to reduce the “error” between FE results and EMA 

results.  

 

1.3 Scope 

A FE model for Prodeck 4 will be built in ANSYS® without the supporting 

assembly and modal analysis will be performed. The details of FE modeling and 
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modal analysis will be discussed in Chapter 2.  Test planning is important in 

acquiring good quality modal data and avoiding pitfalls in testing such as 

locating an accelerometer at or near node points of a few modes. The FE results 

can be used to properly plan the test setup including specimen suspension 

locations, best locations for impact hammer excitation and best locations for 

accelerometer. The details of the test planning and setup will be discussed in 

Chapter 3.  

 

Modal test data acquired from any test specimen needs post processing using 

various signal processing techniques and thereafter application of a curve fitting 

method to extract the desired modal parameters. Chapter 4 will provide the 

details of signal processing and subsequent curve fitting (or modal analysis) of 

modal data. It will also provide some details of the programs written in 

LabVIEW for processing the data.  

 

In Chapter 5, the FE and EMA results will be correlated and the discrepancies 

will be analyzed. This information will be used to update the FE model and 

modal analysis is repeated on the FE model to reduce the “error” between the FE 

and EMA results.  

 

Finally, a summary of this study and recommendations for future work will be 

presented in Chapter 6. 
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CHAPTER 2 - FINITE ELEMENT ANALYSIS 

2.1 Introduction 

A finite element model was built in ANSYS® for a 98˝ x 137.5˝ FRP deck. The 

deck was built up of six individual Prodeck 4 modules, each pultruded to a 

length of 98˝ to create a 98˝ x 148.97˝ deck. The overhang top and bottom flanges 

were cut off from both end modules to attain the required dimensions of 98˝ x 

137.915˝ (Figure 2.1).  

   Figure 2.1 Cross Section of the Full Deck Arrangement 

 

 

Each Prodeck 4 module is ~29˝ wide and 4” deep with flange thickness being 

0.43˝ and web thickness being 0.375˝. Modules are designed such that they fit 

into one another to form two lap joints at top and bottom flanges and are bonded 

together using Pliogrip® structural adhesive. In addition to the adhesive lap 

joints, the joint locations near the top and bottom of the deck are reinforced using 

E-glass fabrics and vinylester resin. This is done to ensure adequate force transfer 
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between the two contiguous modules, since static tests on unreinforced 

transverse deck specimens have revealed inadequate force transfer [4].  

 

2.2 Element Type 

FRP composite structures are made up of thin laminates or plates, since thick 

composites result in failure due to delaminations between various layers. 

Therefore, the composite structures can be modeled as thin plates using shell 

elements. As mentioned above, Prodeck 4 consists of webs with 0.375˝ thickness 

and flanges with 0.43˝ thickness and is modeled as thin plates using SHELL 93 

element available in ANSYS®.  

 

SHELL93 is an eight node structural shell with six degrees of freedom per node. 

The SHELL93 element is defined by eight nodes, four thicknesses and 

orthotropic material properties [5]. Figure 2.2 shows the geometry, node 

locations and the coordinate system for the SHELL93 element. The transverse 

shear stresses (σyz and σxz) are assumed to be constant through the thickness, this 

assumption is not valid for laminates that are thick and if the layers have very 

different shear properties [6].  
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Figure 2.2 SHELL93 Geometry [5] 

 

2.3 Mesh Refinement 

In order to correlate the modal parameters obtained from FE models and EMA, 

the data points on a test structure should match with corresponding nodes in a 

FE model of the structure. With the availability of high powered computers, the 

FE models for structures can be finely meshed to get highly accurate values for 

frequencies and mode shapes. However, it is almost impossible to acquire data 

from the test structure at every node that is used in FE model. For this reason, it 

is prudent to keep the number of nodes in FE to a minimum without affecting 

the accuracy of results. 
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To minimize the number of nodes in the FE model for Prodeck 4, two different 

mesh sizes were used to check for any significant changes in frequencies between 

the two models. This will help identify a reasonable mesh size from which 

enough test data points can be chosen to ensure a meaningful correlation.  

 

 

         

 

Figure 2.3 Two Mesh Sizes 

 

As shown in Figure 2.3 the fine mesh has 3 elements between the two webs and 

each element is two inch wide thereby having 49 elements along the 98˝ width of 

the trailer. The coarse mesh has only one element between the two webs and 

each element is seven inch wide thereby having 14 elements along the 98˝ width 

of trailer. Also, two elements were used along the depth of the flange in both 

cases, since one element did not yield satisfactory results.  

 

a) Fine Mesh b) Coarse Mesh 
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Modal analysis was performed for both the cases and it was found that the 

maximum difference in frequencies obtained from each model for any of the first 

eight modes was less than 0.85%. The coarse mesh was deemed to be satisfactory 

in terms of accuracy and was chosen for test planning and further analysis. 

 

2.4 FEA Results 

The material properties used for Prodeck 4 were based on static load tests 

conducted at CFC [4] and are shown in Figure 2.4.  

 

           

Figure 2.4 Material Properties of Prodeck 4 

 
The model was analyzed without any boundary conditions since the test setup 

would also simulate a free support condition. Modal analysis was performed on 
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the model using Block Lanczos mode extraction method and 20 modes were 

extracted and expanded. Since the model was analyzed without any constraints, 

the results will contain six rigid body modes which are numerically close to zero, 

hence the effective number of modes extracted is 14. Figure 2.5 shows the 

frequency values for the first the 20 modes.  

 

 

Figure 2.5 Frequency Results from Prodeck 4 FE Model 
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The mode shapes for the frequencies listed in Figure 2.5 show that the first mode 

of vibration of Prodeck 4 is a torsional mode at 15.186 Hz and first three bending 

modes have a frequency of 17.539 Hz, 30.789 Hz, and 44.77 Hz. The various 

mode shapes obtained using FEA and comparison with experimental modes will 

be presented in Chapter 3 and in Appendix B. It should be noted that no 

damping was included in the FE model. 
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CHAPTER 3– TEST PLANNING AND SETUP 

3.1 Introduction 

Proper test planning and setup are essential for acquiring accurate modal test 

data. Improper sensor location, support suspension location and excitation 

points can lead to incomplete modal data. Selection of accelerometer/excitation 

points is especially important for a single input single output (SISO) test because 

by locating the accelerometer near node locations of few modes, the response of 

those particular modes will not be captured. The test conducted on Prodeck 4 is a 

SISO test. 

 

The results obtained from the FE Model of Prodeck 4 will be used to determine 

the best impact, best accelerometer and best suspension points. MODPLAN part 

of the modal analysis package MODENT Suite was used for test planning.  

 

3.2 Best Suspension Points 

As mentioned earlier, the test on FRP deck will be conducted using free-free 

boundary condition, since creating a constrained boundary condition that 

accurately replicates the boundary condition used in FE analysis is not possible. 

Theoretically any structure tested on free supports should have six rigid body 

modes, each of which has a frequency of 0 Hz. Since in practice the free-free 
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support is not truly free, the rigid body modes of the structure have frequencies 

which are over 0 Hz. The free support condition can be used as long as the 

frequencies of rigid body modes are very low compared to the frequency of first 

structural mode, which was found to be the case for FRP trailer deck. ‘Very low’ 

means highest frequency of rigid body mode should be around 10-20% of the 

lowest bending mode [7].  

 

The precautions that need to be taken to ensure minimal interference of 

suspension with the modes of vibration of the structure are [7]: 

1) Suspension should be attached close to nodal points of modes of interest. 

2) Possibility of suspension adding damping to a lightly damped structure.  

3) Suspension wires/cables should generally be perpendicular to the 

primary direction of vibration.  

 

The mode shape information obtained from FE analysis of FRP deck is used to 

determine the best suspension locations for the modes of interest. The optimum 

suspension location is where the total response (sum of amplitudes) of all the 

modes would be zero; in practice it may be difficult to find such a location. 

Therefore, the location which has the minimum total response of all the modes is 

ideal for a free-free boundary condition. 
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The optimum suspension points are found where the average displacement for 

all modes is the lowest. The average displacement can be found by a parameter 

known as ‘Average Driving DOF Displacement’ or ADDOFD which is defined as 

[8]: 

ADDOFD (j) =∑
=

m

r r

rj

1
2

2

,

ω

φ
  (3.1) 

where j is location of DOF on the structure and m is the mode of vibration. 

 

 

 

Figure 3.1 Best Suspension Points 
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Figure 3.1 shows the contour plot of FRP deck with ADDOFD values, locations in 

dark blue are optimum suspension points. However, they were not chosen 

because suspending the deck at just two locations would make it unstable for 

testing. The four suspension locations chosen were 28-1/2˝ into the width of the 

deck and around 28-1/4” into the length of the deck (Figure 3.2). According to 

the scale used in Figure 3.1 the selected locations have a scaled ADDOFD of 

between -80 and -70 whereas the best locations are ones having a scaled 

ADDOFD of -100.   

 

 

Figure 3.2 Actual Suspension Locations 

28-1/2˝ 28-1/4˝ 



 17 

3.3 Best Impact Excitation Points 

The locations for best impact are selected based on two criteria: 

1) Avoiding the nodal lines of modes since there would be no energy 

transfer from the point of impact at node locations to all other DOFs of the 

structure. 

2) Picking a location with low average velocity for all the modes will 

eliminate the problem of “double-hits” of impact hammer. 

 

To avoid locations near the nodal lines of modes, Non-Optimum Driving Point 

(NODP) technique can be used. According to Imamovic [8], “the method defines 

a parameter for each DOF which describes how close that DOF is to a nodal line 

of any mode within a specified frequency range. The method selects the 

minimum absolute value of all modal constants for all selected modes for a DOF 

and defines that value as the NODP parameter for that DOF.” 

 

                              NODP (j) = { }
rj

r
Min ,φ                            (3.2) 

A low value of NODP indicates the DOF is close to nodal lines for the selected 

modes.  
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The problem of “double-hits” can be avoided by selecting locations with low 

average velocity. The average velocity can be found by a parameter known as 

‘Average Driving DOF Velocity’ or ADDOFV which is defined as [8]: 

ADDOFV (j) =∑
=

m

r r

rj

1

2

,

ω

φ
                                              (3.3) 

where j is location of DOF on the structure and m is mode of vibration 

 

A location with high ADDOFV should be avoided for impact hammer excitation 

to reduce the possibility of “double-hits”. The best impact excitation location (or 

DOF) can therefore be chosen picking the DOF with high NODP/ADDOFV ratio 

(Figure 3.3).  
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Figure 3.3. Best Impact Locations 

 

3.4 Best Accelerometer Points 

The best location of accelerometer is selected by the using the EI-ADDOFA 

optimization method proposed by Imamovic [8], EI stands for Effective 

Independence Matrix and ADDOFA stands for Average Driving DOF 

Acceleration. The EI-ADDOFA method is a modification to the EI optimization 

method proposed by Kammer [9]. 
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Figure 3.4 Best Accelerometer Points 

 

The effective independence method starts out by calculating the so-called 

‘Prediction Matrix,’ [E] for the mode shape matrix 

[ ] [ ] [ ] [ ]( ) [ ]T

mxNNxm

T

mxNNxmNxNE φφφφ
1−

=                          (3.4) 

where [ ]Nxmφ  is the mode shape matrix consisting of m modes evaluated at N 

DOFs. 
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The Prediction Matrix is idempotent matrix [ ] [ ]( )EE
m

= , and it possesses some interesting 

properties.  

                                  trace [ ]E =rank [ ]E =rank [ ]φ                                  (3.5) 

 

The goal of any modal test engineer is to obtain the modal parameters of a 

system especially mode shapes with fewest possible measurement locations, to 

reduce the time and cost of testing. Measurement locations should be chosen 

such that mode shapes are independent i.e., the columns of the [ ]φ  must be 

linearly independent. Each of the diagonal terms of [ ]E matrix indicates the 

contribution of that particular DOF to the rank of [ ]φ . The smallest diagonal term 

of [ ]E  reveals the DOF which has least contribution to the linear independence of 

the mode shapes, this DOF is eliminated and the process is repeated until rank 

[ ]φ is less than the number of modes m i.e., until [ ]φ  ceases to be full rank.  

 

The EI method is effective in picking the DOFs to ensure the linear independence 

of the mode shapes, but the method does not distinguish between DOFs with 

high or low response. DOFs with higher responses are preferred for better signal 

to noise ratio, and high response DOF can be identified by the parameter 

‘ADDOFA’ which is defined as follows [8]: 

            ADDOFA (j) = ∑
=

m

r

rj

1

2

,φ                      (3.6) 

where j is location of DOF on the structure and m is mode of vibration 
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Imamovic [8] proposed a modification to the EI method called the ADDOFA-EI 

method, in this method the diagonal values of [ ]E  matrix are multiplied by their 

corresponding ADDOFA values and the same iterative procedure as the EI 

method is applied to determine the fewest number of measurements to ensure 

linear independence of mode shapes. By including the ADDOFA, the modified 

method picks DOFs with better response, apart from the linear independence 

requirement (Figure 3.4).  

 

3.5 Test Setup and Instrumentation 

The FRP deck was setup based on the extensive pre-test planning, as described in 

previous sections. Four eye-bolts were bolted to the FRP deck at four locations 

(shown in Figure 3.5), two cloth slings were used to suspend the deck. The two 

slings were attached to a chain using a hook, the chain was passed around the 

center beam of a load frame. The load frame has very high stiffness when 

compared to the stiffness of the deck and hence any minute vibrations of frame 

transmitted through the suspension would not fall into the frequency range of 

FRP deck modes. Ideally, the deck should be suspended using elastic cords or 

small air bags, but there are no commercially available elastic cords which can 

handle the weight of this FRP deck and small airbags, even if available, were not 

used because of cost reasons.  
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Figure 3.5 Test Setup of FRP Deck 

 

The time allocated for modal testing was just two days, including setup and 

dismantling time, since the FRP deck was to be bonded to the subsystem to build 

a FRP trailer for static testing. Therefore, only one accelerometer could be 

calibrated and also impact hammer excitation was chosen, since setting up of 

electrodynamic shakers would be time consuming. SISO method of test was used 

because of time constraints. 
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Based on the pre-test analysis of the best location for the accelerometer was at 

any of the corners of the FRP deck. PCB J353B33 accelerometer (Sensitivity 100 

mV/g and frequency range of 1-4000 Hz) was used to acquire the response, the 

accelerometer was bonded to the FRP deck using “Super Glue.” The 

accelerometer was calibrated using drop calibration method before and after the 

modal test.  

 

The size of impact hammer should be chosen such that the hammer is heavy 

enough to impart enough energy into the structure to excite all the modes of 

interest without damaging the structure. A 5000 lbf impact hammer (Kistler 

model 9728A20000) was used to excite the FRP deck, a soft tip was used to excite 

the deck, since the maximum frequency of excitation needed was only 200 Hz. 

The impact hammer was received the day before the actual test and was 

calibrated by the manufacturer the previous day. Therefore, no calibration was 

performed on the impact hammer. 

 

3.5 Data Acquisition  

DSTP Siglab™ Model 20-42, dynamic signal analyzer was used to acquire the 

data from the impact hammer and accelerometer. The 20-42 system has four 

input channels and two output channels. Each input channel is simultaneously 

sampled with sampling rate of 51.2 kHz and has a separate 16 bit resolution 
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Sigma-delta A/D convertor for each channel. Siglab™ is driven by MATLAB® 

based software, the software consists of several modules, each module is 

designed for a specific area such as structural dynamics, noise and vibration, 

rotating machinery analysis etc. The vna module in Siglab™ was used for testing 

the FRP deck and only time domain data was acquired although Siglab™ could 

perform all the required signal processing, and calculate frequency response 

functions (FRFs) directly.  

 

A sampling rate of 1280 Hz was used and 4096 points were collected giving a 

frequency resolution of 0.3125 Hz.  In retrospect, it is found that sampling rate 

was on the higher side since modes over 350 Hz were not adequately excited due 

to the use of soft tip. The impact hammer and accelerometer were both connected 

to battery powered ICP® signal conditioners. Impact hammer was connected to 

channel 1 of the data acquisition system and its signal was used to trigger the 

data collection. The accelerometer was connected to channel 2.  Figure 3.6 shows 

the screenshot of the vna module in Siglab™, window on the top shows the time 

history of impact hammer and bottom window shows the acceleration time 

history.  

 

The threshold for trigger of impact hammer was set at 9% of peak value and a 

pre-trigger of -0.1 was chosen to completely acquire the impact signal.  No 
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windows were applied during acquisition to either the hammer input data or the 

accelerometer data. 

 

 

Figure 3.6 Screenshot from Siglab™ Data Acquisition Software 

 

Single input single output (SISO) method was used for testing the FRP deck. The 

impact hammer was roved on different measurement points while the reference 

accelerometer was placed at location 3402 (Figure 3.7) on the deck. This type of 

test is called a roving hammer test. One hundred twelve (112) locations on the 

top of deck were chosen from FE mesh for excitation using impact hammer 

(Figure 3.7).   
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Figure 3.7 Measurement Locations 

 

Test data collected as per the procedure described in this chapter has to be 

processed to calculate the frequency response functions. The post processing of 

the time domain data is described in detail in next chapter. 
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CHAPTER 4 - POST PROCESSING AND MODAL 
ANALYSIS OF TEST DATA 

 

4.1 Post Processing of Test Data 

Time domain data acquired during a modal test has to be post-processed before 

evaluating the frequency response functions. Problems such as leakage, 

experimental noise, low frequency resolution, DC offsets can be reduced or 

eliminated during post processing. As mentioned in the earlier chapter, data was 

acquired at 112 locations on the FRP deck, and four sets of data were acquired at 

each point.  

 

The first step in signal processing is to remove the DC offset from both the 

hammer and accelerometer signals. A typical hammer impulse signal should 

have a half-sine peak and a flat line, however the impulse signal is usually 

contaminated with noise. Since it is known that no force input has occurred after 

the half-sine peak, a rectangular window can be applied to the hammer 

excitation to zero all values of the signal after the half-sine peak, thereby 

eliminating noise from that part of the signal. The accelerometer signal is 

completely observable within the time of capture and no exponential window 

was needed.  
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The frequency resolution obtained by calculating FRF directly from measured 

data is 0.3125 Hz; however, the FE results reveal that FRP deck has several close 

modes, some of them are within the resolution of 0.3125 Hz e.g. 30.586 Hz and 

30.789 Hz. The frequency resolution of FRF was increased to 0.078125 Hz by 

adding 12,288 zeros to both hammer and accelerometer signals thereby 

increasing the total time of signals to 12.8 secs, this technique is known as ‘zero 

padding’. 

 

The FRF is calculated using H1 method, which is the ratio of Cross Power 

Spectrum between stimulus (impact hammer) and response (accelerometer) and 

Auto Power Spectrum of stimulus [10]. The FRFs were calculated for each of the 

four sets of data at each point and then averaged and this process is repeated for 

all 112 points.  

 

The above signal processing was done using custom VIs (programs) written in 

LabVIEW, details of the VI are provided in Appendix A. For importing the FRFs 

into any commercially available Modal Analysis packages, the FRFs have to be 

converted to either the Universal File Format 58 (UFF58) or into a package 

specific format.  LabVIEW VI’s were written to format the FRFs into UFF58 

specification. The UFF58 specification can be found at 

http://www.sdrl.uc.edu/uff/SDRChelp/LANG/English/unv_ug/UNV_0058.h

tm.  
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4.1 Basic Assumptions of Modal Analysis  

Modal analysis can be applied to any structure as long as the structure satisfies 

the basic assumptions on which modal analysis is based on. The assumptions are 

as follows [11]: 

 

1) The structure is linear, the magnitude of FRFs should not change due 

to variation in input force.  

2) The structure can be considered time invariant i.e., the behavior of 

structure should not change with time. 

3) The structure is observable, in other words the structural response 

should be measurable with sufficient sensors available to adequately 

describe the input-output characteristics of system. 

4) The structure obeys Maxwell’s reciprocity theorem, a frequency 

response function measured at location p due to excitation at location q 

should be the same as a frequency response function measured at 

location q due to excitation at location p.   

 

Linearity of FRP deck was verified by comparing the FRFs computed from two 

data sets at same location, since no two impact excitations impart the same force 

to the deck. Figure 4.1 shows the plot comparing the FRFs of two data sets (trial 1 
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and trial 2) at location 1000 (Figure 3.7), it can be seen that there are identical 

without any change in amplitude levels.  
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Figure 4.1 FRP Deck Checked for Linearity 

 
 
 
Time invariance check was performed by acquiring the response at location 3402 

and due to excitation at 2884 at different times of the days, first data acquisition 

was at 11.12 AM and next data acquisition was at 9.48 PM. A comparison of FRFs 

for these two data sets, shown in Figure 4.2, reveals that FRP deck response is 

time invariant (since temperature is constant in laboratory environment). Also, it 
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is obvious from Figures 4.1 and 4.2 that the FRP deck response is observable, 

thereby satisfying the third condition mentioned above.  
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Figure 4.2 FRP Deck for Time Invariance 

 

 

In order to verify that the FRP deck obeys Maxwell’s reciprocity theorem, the 

response at location 3402 due to excitation at 1498 was acquired and the response 

at location 1498 due to excitation at 3402 were acquired and the FRFs were 

compared. Figure 4.3 shows that both the FRFs H3402,1498 and H1498,3402 are almost 

identical, thereby satisfying the Maxwell’s reciprocity theorem.  
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Figure 4.3 FRP Deck Check for Reciprocity 

 
 

4.3 Modal Analysis 

Modal analysis or modal parameter extraction methods can be broadly classified 

into frequency and time domain methods. Based on range of frequencies selected 

for each individual analysis, the frequency domain methods can be further 

classified into SDOF methods and MDOF methods.  The methods can be also be 

classified into single FRF methods and multi FRF methods. The multi FRF 
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methods are grouped into global methods (for Single Input Single Ouput (SISO) 

or Single Input Multiple Output (SIMO) data sets), and polyreference methods 

for Multiple Input Multiple Output data [7].   

 

Peak-Amplitude method, Circle Fit method and Line Fit method are some of the 

Single DOF methods. SDOF methods extract the properties of one mode at a time 

on a single FRF and therefore are time consuming to apply to large sets of FRFs. 

However, the SDOF methods are very useful in providing initial estimates of 

frequency, identifying problems such as non-linearity etc and type of damping of 

system.  The Circle Fit method was used to identify the different frequencies of 

FRP deck; the frequencies are listed in Table 4.1. The frequency estimates were 

useful in determining the frequency range for applying global modal analysis 

methods.  Frequencies estimated from Circle Fit method on H3402,119 are listed in 

Table 4.1. 
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Table 4.1 Frequencies of FRP Deck extracted using Circle Fit Method 

Mode  Frequency 

1 21.454 Hz 

2 21.751 Hz 

3 22.794 Hz 

4 38.868 Hz 

5 40.431 Hz 

6 41.489 Hz 

7 57.114 Hz 

8 62.036 Hz 

 

 

Global methods analyze multiple sets of FRF data to estimate the frequencies, 

modal constants (residues), and modal damping. Ibrahim Time Domain (ITD), 

Eigensystem Realization Algorithm (ERA), Polyreference Frequency Domain 

(PFD) and Rational Fraction Polynomial (RFP) are some of the global modal 

analysis methods.  

 

The Rational Fraction Polynomial method developed by Richardson and 

Formenti, 1985 [12] is described in the following section.  

 

FRF can be expressed as a ratio of two polynomials as shown in  
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In the RFP method, the unknown coefficients in the numerator and denominator 

are found using the curve fitting process. The modal parameters are related to 

numerator and denominator coefficients and modal parameters are obtained 

from the estimated numerator and denominator coefficients.  

 

Error between measured FRF and theoretical value obtained from curve fitting 

FRF, can be defines as follows 
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where kH
~

= )(
~

kH ω , is the measured FRF data point and m is number of measured 

modes.  

 

Equation 5.2 can be written in convenient form 
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Rearranging, we get 
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L linear equations similar to Equation 4.3 can be written for each of the L 

individual frequency points in the FRF. Combining the L such equations and 

writing it in matrix form, we obtain 

 

{ } [ ] { } [ ] { } { } 11221221 LxmxmLxmxmLxLx
WaTbPE −−=      (4.5) 

 

The error criteria is defined as  

{ } { }EEJ
t*=             (4.6) 

where * denotes complex conjugate and t denotes transpose 

 

Solution to unknown coefficients can be achieved by minimizing the error 

function J  i.e., 0,0 =
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where 

[ ] [ ] [ ]( )PPY
T

*Re= ; [ ] [ ] [ ]( )TPX
T

*Re= ; [ ] [ ] [ ]( )TTZ
T

*Re= ; [ ] [ ] [ ]( );*Re WPG
T

=  

[ ] [ ] [ ]( )WTF
T

*Re=  

 

Equation 4.7 can be solved to determine { }b  and{ }a , however it was found that 

[ ]P  and [ ]T  are ill-conditioned. The above equations can be reformulated using 

orthogonal polynomials for better conditioning. Further details can be found in 

reference [12]. The modal parameters can be derived from the numerator and 

denominator coefficients.   

 

The RFP method mentioned above is only applicable for a single FRF and can be 

extended to multiple FRF data obtained using SIMO or MIMO tests. The RFP 

method can be applied to multiple FRFs by dividing the processing into two 

distinct steps: 1) estimate global frequencies and damping from all FRFs, one of 

the ways to do this is average together magnitudes of all FRFs and use the 

resulting FRF to obtain the frequencies and damping, and 2) process one FRF at a 

time to estimate the modal residue (thereby the mode shapes) using the global 

frequency and damping values estimated in step 1 [13]. 

 

Several modal analysis packages such as ICATS –MODENT, MEScope 

implement the Rational Fraction Polynomial (RFP) method. RFP method 
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implemented in MODENT was used to extract the modal parameters of the FRP 

deck from the measured FRFs. The step-by-step procedure for obtaining modal 

parameters from MODENT using RFP method is presented below. 

 

STEP 1: All the measured FRFs are imported into the modal analysis package in 

UFF 58 format (using LabVIEW Program written for this purpose, see Appendix 

A). 

 

STEP 2: The frequency range over which the analysis has to be performed is 

chosen either by using a drag box on the FRF window or by selecting the 

frequency range. 

 

STEP 3: The MODENT software will select 16 randomly chosen points within the 

selected frequency range and analyze them for each run. 20 independent runs 



 40 

will be performed and the results are averaged. Confidence factors for each 

identified mode are also calculated by averaging the results from 20 runs. If a 

particular mode were to be found in 14 out of 20 runs, the confidence factor will 

be 70%. In the analysis window shown below, two modes were found in 100% of 

the run, indicating consistency.  

 

 

 

STEP 4: After the completion of 20 runs, the modal frequency and damping 

ratios will be displayed by selecting the two modes picked in all runs. At this 
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stage, the user can select the frequency and other modal parameters for different 

modes and store them in a file. 

 

 

 

STEP 5: Steps 1 to 4 are repeated for analyzing all the desired frequencies in the 

FRFs. Proper care should be taken to identify closely spaced modes, data from a 

preliminary SDOF analysis on a few FRFs will be helpful in this regard. 
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CHAPTER 5 – CORRELATION OF FE AND EMA 
RESULTS 

 

5.1  Introduction 

The most popular application of experimental modal analysis is to provide a 

comparison between predicted dynamic behavior (from a FE model), and actual 

dynamic behavior obtained from a modal test. First step is to have a direct 

comparison between the predicted and actual behavior of structure and to 

quantify the extent of difference between the two. Next, the sources of 

discrepancy in the FE model have to be identified and “adjusted” to reduce the 

discrepancy between the predicted and experimental dynamic properties (Ewins, 

2000). The level of closeness required depends on the specific problem.  

 

5.2 Comparison of Natural Frequencies 

Initial comparison is made between the FE modal frequencies and experimental 

frequencies. A consistent error between the FE and experimental frequencies 

could indicate an error in material property or something as simple as using the 

wrong material density in the FE model. Table 5.1 provides a comparison of FE 

and experimental frequencies below 75 Hz.  
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Table 5.1 Experimental vs. FE Frequencies 

FE Model 
Frequencies 

Experimental 
Frequencies 

15.19 Hz 21.37 Hz 

17.54 Hz 22.79 Hz 

30.59 Hz 38.13 Hz 

30.79 Hz 38.96 Hz 

44.77 Hz 40.49 Hz 

46.09 Hz 41.54 Hz 

58.00 Hz 57.16 Hz 

61.60 Hz 61.96 Hz 

73.92 Hz 71.34 Hz 

 
 
As can be seen from Table 5.1, there is significant discrepancy between the FE 

and Experimental results. However, for a meaningful comparison between the 

two, the modes must be correlated and compared. Correlation between modes 

can be done visually or using a parameter known as ‘Modal Assurance Criterion’ 

or MAC.  

 

Modal Assurance Criterion (MAC) is defined as follows: 
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where { }Aψ  = theoretically predicted mode shape. 

 { }Xψ = experimentally measured mode shape.  

 

A MAC value of 1 or 100% indicates perfect correlation between the two mode 

compared, a value of 0 indicates no correlation.  MODESH, a module in the 
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MODENT software suite has a provision for comparison frequencies and 

computation of MAC values, among other things. Figure 5.1 shows the frequency 

plot and MAC chart for the experimental and FE results. 

 

 

Figure 5.1 Modal Frequency Comparison and MAC 

 

Another useful format for comparison of frequencies is plotting the experimental 

and FE frequencies on X and Y axes (Figure 5.1). Also, seen in Figure 5.1 is chart 

with MAC computations between different modes of FE and experiment. A dark 

blue (or dark colored) box indicates the MAC value is close to 100%, indicating 

the two modes are correlated and are known as ‘correlated mode pairs’. Modes 1, 

2 & 4 obtained using FE analysis and experiment are correlated whereas mode 3 

of FE is correlated with mode 6 of experiment. Modes 5 & 6 of FE correlate well 
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with modes 7 & 8 of experiment.  Now, the frequency comparison will be useful 

in determining any errors in FE modeling. 

Table 5.2 Frequency Comparison between Correlated Mode Pairs 

FE Model Freq (Hz) Exp Freq (Hz) % Diff 

15.19 21.37 40.68 

17.54 22.79 29.93 

30.79 38.96 26.53 

30.59 41.54 35.80 

44.77 57.16 27.67 

46.09 61.96 34.43 

 

5.3 Comparison of Mode Shapes 

At this stage, it will be useful to look at the modeshapes obtained from FE 

analysis and through experiment to gain insight into the large discrepancy in the 

frequency values. Figure 5.2 shows the modeshapes of Mode 1 obtained from FE 

and experiment, as mentioned earlier,  have a MAC value of close to 100% i.e., 

they are correlated mode pairs. Mode 1 in both FE and experiment are torsional 

modes, the lower frequency obtained through FE indicates that the torsional 

stiffnesses of deck used in FE (Figure 3.4) are lower than the actual torsional 

stiffnesses of the deck in addition to influence of boundary conditions and extra 

thickness at the joints of the deck. It should be noted that the material properties 

shown in Figure 3.4 are obtained from testing of individual deck modules, which 

behave more like beams and there is no plate action. One other parameter which 

has significant influence on frequencies is the density of material used in the FE 
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model, use of higher density than actual will result in all the frequencies 

obtained from FE to be lower than experimentally obtained modal frequencies. 

However, the value shown in Figure 3.4 was double checked and is accurate. 

 

Figure 5.2  Comparison of FE vs. Exp Modeshapes –Mode 1 

 

FE-Mode 1 - 15.18 Hz 
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Next, the second modes from FE and experiment are plotted in Figure 5.3, they 

are also a correlated mode pair. The second mode is the first bending mode in the 

Y direction of the deck.  The X direction of the deck is the cell direction, Y 

direction of the deck is along the length of the deck and Z direction is along the 

depth of the deck.  

 

 

Figure 5.3 Comparison of FE vs. Exp Modeshapes –Mode 2 

FE Mode 2- 17.54 Hz 
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Although, the first bending modeshapes are well correlated (MAC close to 

100%), the frequency obtained through the FE model is almost 30% lower than 

experimental value. This indicates that the stiffness value (Ey) in Y-direction used 

in FE model is lower than actual stiffness of deck. Here again, the deck property 

Ey was measured on a single deck module which acts as a beam type structure.  

Similar comparison can be made for other correlated mode pairs (CMPs), the 

mode shapes for other CMPs are shown in Appendix B.  

 

5.4 Updating the FE model 

As discussed in the previous section, there is a mismatch in frequency between 

the CMPs while the MAC value is close to 100%.  Frequency mismatch for all 

modes of vibration could be due to three reasons: 1) the actual FRP deck is stiffer 

than the FE model, 2) boundary conditions could have some influence on some 

or all of vibration modes, and 3) increased thickness at joints due to 

reinforcement (not accounted for in original FE model). From the first torsion 

and bending mode frequencies mismatch, it is obvious that Gxy and Ey used in FE 

is lower than actual FRP deck Ey.  Comparisons of frequencies of other CMPs 

between FE and experimental as shown in Appendix B reinforce the conclusion 

that the Ey and Gxy, Gyz and Gxz used in FE model are lower than the actual FRP 

deck. 
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Coupon level tests on Prodeck 4 module to determine the Ey revealed a value of 

2.5x106 psi [Personal communication with Vimala Shekar, 2005]. This is much 

higher than the Ey value at component level (beam tests) of 1.4x106 psi reported 

by [4].  The lap joints for Prodeck 4 do not efficiently transfer the forces between 

the two modules, especially in a beam type structure, which explains the 

significant loss of stiffness due to presence of the joints. However, in this case 

where the structure acts more like a plate, a higher value of Ey than 1.4 million 

psi could be expected even in the presence of same lap joints due to plate-action.  

Also, the joints are reinforced using glass fabrics thereby having higher 

thickness.  

 

 
 The FE model was updated based on the above comparisons of the FE and 

experimental results.  The FRP deck model was modified based on the three 

sources of error in modeling mentioned above. The three updating parameters 

were: 1) modified materials properties, 2) including the suspension mechanism 

in the FE model, and 3) updating the thickness at the joints.  Figure 5.4 lists the 

modified material properties used for the FRP deck, and the same density of FRP 

deck was used. Higher Gxy, Gyz and Gxz were also used to better simulate the 

behavior of FRP deck.  A nominal transverse stiffness value of 1 million psi was 

used to model the lap joints of the FRP deck. Figure 5.5 lists the material 

properties used for modeling the lap joint.  



 50 

 
 

 
 

Figure 5.4 Modified FRP deck properties used in FE model 
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Figure 5.5 Material properties used to model the lap joints 

 
 
 
The mesh for the modified FE model is shown in Figure 5.6, the different colors 

in the mesh represent the different material properties and thicknesses used. The 

size of mesh remained unchanged from the original FE model. The spring 

stiffness for the nylon suspension was estimated so as to match the highest rigid 

body mode of the FE model with the experimental equivalent. A stiffness of 6700 

lb/in was used. The joint element thickness was updated from a value of 0.43” to 

0.875” based on actual measurements on the FRP deck.  
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Figure 5.6 Mesh of modified FE model for FRP Deck 

 
 

5.5 Frequency Comparison- Updated FE vs. Experimental Results 

  
 
Updating the FE model by modifying the material properties did not change the 

pattern of modes, i.e., the first mode is still the torsional mode and second mode 

is the first bending mode along the Y-direction and so on. But, the correlated 

mode pair frequencies of the updated model were higher than the original 

model. The correlated mode pairs between the updated FE model and 

experimental results were identified based on visual inspections, MAC values 
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were not recalculated (Figure 5.7).  The frequency comparison of CMPs of 

updated FE model and experimental results is shown in Table 5.4  

 

               

 

Figure 5.7 Second Mode, a) Updated FE – 22.49 Hz, b) Exp – 22.79 Hz 

a) 

b) 

FE Mode 2 – 22.49 Hz 
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Table 5.3  Frequency Comparison between Correlated Mode Pairs of Updated 
FE Model and Experiment 

 

Updated FE Model Freq (Hz) Exp Freq (Hz) % Diff 

22.17 21.37 3.60 

22.49 22.79 1.33 

40.56 38.96 1.47 

39.93 41.54 1.71 

60.09 57.16 4.87 

60.55 61.96 2.32 

 
 
 

As seen in Table 5.4, the difference between experimental and FE frequencies has 

dropped from 26.53% - 40.68% range to 1.33% - 4.87% range, indicating that the 

updated FE model better simulates the dynamic behavior of the FRP deck. 

 

These updated models of the FRP deck can be used in simulate the response of 

the FRP deck trailer due to various dynamic loads. In another application, the 

updated FE model of FRP deck can be used as part of any multi-body dynamics 

model of the FRP trailers using ADAMS. Usually, the multi-body dynamics 

models use rigid parts for modeling, FE data can be used to incorporate 

flexibility into any part of the model improving its simulation results.  

 

By updating the shear stiffness values (Gxy, Gyz and Gxz), the error in frequencies 

between the FE model and experimental is reduced, however, there is no 

theoretical or experimental basis for these values. The stiffness values were 
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updated by observing the physical behavior of the dynamics of FRP deck 

obtained experimentally. It is recommended that shear properties should be 

validated through full scale testing of FRP deck. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 56 

 

CHAPTER 6 – SUMMARY AND CONCLUSIONS 

 
 

6.1 Summary 

Prodeck 4, a lightweight low profile FRP deck developed primarily as a bridge 

deck, is being evaluated as part of a new generation FRP trailer design for the 

Medium Tactical Vehicle Replacement (MTVR). Part of evaluation of the new 

FRP trailer design included building a detailed FE model and predicting the 

response of the trailer under different operational and transportational loads. 

The Prodeck 4 module is a new system and has orthotropic material properties, 

therefore an FE model of FRP deck that is validated through experimental data 

will ensure confidence in results obtained from the FE model for the full trailer. 

The objectives of this research were to: 1) obtain frequencies and mode shapes 

using FE model, 2) conduct experimental modal testing on the FRP deck to 

obtain the frequencies and mode shapes, and 3) update the FE model based on 

modal test data. 

 

A FE model was built for the FRP deck in ANSYS® using Shell93 elements. 

Material properties used in the FE model were based on previous static testing of 

FRP deck. Frequencies and mode shapes were obtained from the FE model. 

Results from the FE analysis were used for test planning of the FRP deck, the best 
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suspension points, the best accelerometer location, and the best impact locations 

were determined. A test setup for FRP deck was designed based on the test 

planning. Single input single output (SISO) test was conducted using an impact 

hammer and one accelerometer as reference, a SISO test was chosen due to time 

constraints.  

 

Post processing was performed on the data acquired from the FRP deck by 

applying windows on input and response data and “zero-padding” the data to 

increase the frequency resolution before computing the FRFs. The data from four 

trials was averaged and converted to UFF58 format. Rational Fraction 

Polynomial (RFP) method was chosen as the modal parameter estimation 

algorithm. MODENT, a modal analysis package implements the RFP method 

and this method was used for extracting the modal parameters (frequencies, 

mode shapes and, damping).  

 

Experimental and FE results were compared through comparison of correlated 

mode pair frequencies, visual inspection of mode shapes and calculation of MAC 

values. Results indicated that while MAC values for correlated mode pairs were 

in perfect agreement the frequencies between FE and experiment were 

significantly different (26.53%-40.68% error). Visual inspection of mode shapes of 

both FE and experiment revealed that the Y-direction of FRP deck and the 

torsional stiffness values used in FE might be lower than actual. The stiffness 



 58 

values, thickness at joints, were updated based on these observations and the FE 

analysis was repeated by including realistic boundary conditions.    

 

6.1 Conclusions 

 
The error between FE and experimental values of frequency has reduced to 

1.33%-4.87% range after updating, from an original error of 26.53%-40.68%. 

Correlated mode pairs have shown a MAC value of close to 100%, revealing 

perfectly correlated mode shapes.  However, there is no one-to-one 

correspondence between the modes in FE and experiment, i.e., modes 1, 2 & 4 

obtained using FE and experiment are correlated whereas mode 3 of FE is 

correlated with mode 6 of experiment. Modes 5 & 6 of FE correlate well with 

modes 7 & 8 of experiment.  Also, there are a couple of modes obtained 

experimentally that were not predicted by the FE model.  Therefore, it can be 

stated that updated FE model is not “completely correct.” 

 

Even though the updated FE model is not perfectly correlated with experiment, it 

will serve a few purposes such as using the updated FE results to create a flexible 

part for the FRP deck in the multi-body dynamics model of the FRP trailer. In 

addition, the updated model can be used in predicting the dynamic response 

which is dominated by the fundamental and maybe second mode of vibration. 
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To reduce the computation time a coarse mesh was used, therefore this model 

cannot be used to predict the local vibration response of the FRP deck.  

 

Certain applications would require further refinement of the FE Model. Further 

refinement of the FE model can be achieved through several ways: 1) introducing 

some compliance in the lap joint of contiguous FRP modules to better simulate 

the inadequate force transfer between modules, 2) consider modeling the deck 

using layer-by-layer properties, 3) accurately modeling the shape of the deck, 

including the slopes on overhanging flanges, and 4) refine the mesh for local 

flange and web vibration prediction.  

 

The shear stiffness values (Gxy, Gyz and Gxz) used in FE model has to be validated 

through full scale testing of FRP deck.   
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APPENDIX A - LabVIEW Program Descriptions 
 

Three LabVIEW programs were written for, 1) signal processing of the time 
domain data and calculation of frequency response functions (FRF-
Automatic.vi), 2) averaging the frequency response functions obtained from 
different sets of data from each node (FRF_Average.vi), and 3) a program to 
convert the averaged FRF data file into UFF58 format FRF file. All three 
programs are described in detail in this appendix. 

 

FRF-Automatic.vi 

This VI reads "raw" time domain data files which were generated from Siglab 
data acquisition system and performs the required signal processing on the data 
and calculates the Frequency Response Functions for each test trial. The input for 
this VI is a text file containing the list of nodes of the structure. The raw time 
domain data should be stored in "Node#-Trial# .txt" e.g., 1000-2.txt. The VI reads 
automatically reads four trials (sets) of the time domain data files for each of the 
nodes listed in input file, and outputs a "Node#-Trial# .frf" file. 

 

Controls and Indicators 

 Sampling Rate  

dt is the sample period of the time-domain signal, usually in seconds. It is 
also 1/fs where fs is the sampling frequency of the time-domain signal. 

 Impact Hammer 

 FRF-Magnitude 

 FRF-Phase 

 Accelerometer 

 Output Array 
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Front Panel 
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Block Diagram 
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List of SubVIs 

 
Read From Spreadsheet File.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Utility\file.llb\Read From Spreadsheet 
File.vi 

 
Force Window.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Analysis\4window.llb\Force Window.vi 

 
Linear Fit.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Analysis\6fits.llb\Linear Fit.vi 

 
Transfer Function.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Analysis\0measdsp.llb\Transfer Function.vi 

 
Zero Padder.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Analysis\2dsp.llb\Zero Padder.vi 

 
Write To Spreadsheet File.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Utility\file.llb\Write To Spreadsheet File.vi 
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FRF_Average.vi 

This VI automatically reads the different sets of FRF data files and calculates the 
average and writes the output to a new file. The input for this VI is a text file 
containing the list of nodes on the structure.  

 

Front Panel 

 

 

Controls and Indicators 

 Output Array 
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Block Diagram 
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List of SubVIs 

 
Read From Spreadsheet File.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Utility\file.llb\Read From Spreadsheet 
File.vi 

 
Write To Spreadsheet File.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Utility\file.llb\Write To Spreadsheet File.vi 
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UFF58.vi 

This VI automatically converts the FRF data file into UFF58 file format. The user 
has to input the following information: 1) Reference Node # , 2) Response 
Direction, 3) Reference Direction, 4) #  of Pts in FRF, 5) Delta F (Frequency 
resolution of FRF). The input for this VI is a text file containing the list of nodes 
on the structure. 

 

Front Panel 

 

 

Controls and Indicators 

 Response Direction 

 Reference Node 

 Reference Direction 
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 #  of Pts in FRF 

 Delta F 

 

Block Diagram 
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List of SubVIs 

 
Write Characters To File.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Utility\file.llb\Write Characters To File.vi 

 
Read From Spreadsheet File.vi 

C:\Program Files\National 
Instruments\LabVIEW\vi.lib\Utility\file.llb\Read From Spreadsheet 
File.vi 
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APPENDIX B – CORRELATED MODE PAIRS 
 

This appendix shows the mode shapes of remaining correlated mode pairs between the 

original FE model and the experimentally obtained mode shapes. The mode shapes of the 

first two correlated mode pairs are shown in Chapter 5. 

 

 
 

 

 
 

 

 

Experimental 

FE Mode 4 – 30.79 Hz 
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FE Mode 3 – 30.586 Hz 

Experimental 
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FE Mode 5 - 44.77 Hz 

Experimental 
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 FE Mode 6 - 46.1 Hz 

Experimental 
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UNCORRELATED MODES FROM EXPERIMENT  
 

 

 

 
 

 

Experimental 

Experimental 
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