17 research outputs found

    Interventions to increase attendance for diabetic retinopathy screening

    Get PDF
    BACKGROUND: Despite evidence supporting the effectiveness of diabetic retinopathy screening (DRS) in reducing the risk of sight loss, attendance for screening is consistently below recommended levels.OBJECTIVES: The primary objective of the review was to assess the effectiveness of quality improvement (QI) interventions that seek to increase attendance for DRS in people with type 1 and type 2 diabetes.Secondary objectives were:To use validated taxonomies of QI intervention strategies and behaviour change techniques (BCTs) to code the description of interventions in the included studies and determine whether interventions that include particular QI strategies or component BCTs are more effective in increasing screening attendance;To explore heterogeneity in effect size within and between studies to identify potential explanatory factors for variability in effect size;To explore differential effects in subgroups to provide information on how equity of screening attendance could be improved;To critically appraise and summarise current evidence on the resource use, costs and cost effectiveness.SEARCH METHODS: We searched the Cochrane Library, MEDLINE, Embase, PsycINFO, Web of Science, ProQuest Family Health, OpenGrey, the ISRCTN, ClinicalTrials.gov, and the WHO ICTRP to identify randomised controlled trials (RCTs) that were designed to improve attendance for DRS or were evaluating general quality improvement (QI) strategies for diabetes care and reported the effect of the intervention on DRS attendance. We searched the resources on 13 February 2017. We did not use any date or language restrictions in the searches.SELECTION CRITERIA: We included RCTs that compared any QI intervention to usual care or a more intensive (stepped) intervention versus a less intensive intervention.DATA COLLECTION AND ANALYSIS: We coded the QI strategy using a modification of the taxonomy developed by Cochrane Effective Practice and Organisation of Care (EPOC) and BCTs using the BCT Taxonomy version 1 (BCTTv1). We used Place of residence, Race/ethnicity/culture/language, Occupation, Gender/sex, Religion, Education, Socioeconomic status, and Social capital (PROGRESS) elements to describe the characteristics of participants in the included studies that could have an impact on equity of access to health services.Two review authors independently extracted data. One review author entered the data into Review Manager 5 and a second review author checked them. Two review authors independently assessed risks of bias in the included studies and extracted data. We rated certainty of evidence using GRADE.MAIN RESULTS: We included 66 RCTs conducted predominantly (62%) in the USA. Overall we judged the trials to be at low or unclear risk of bias. QI strategies were multifaceted and targeted patients, healthcare professionals or healthcare systems. Fifty-six studies (329,164 participants) compared intervention versus usual care (median duration of follow-up 12 months). Overall, DRS attendance increased by 12% (risk difference (RD) 0.12, 95% confidence interval (CI) 0.10 to 0.14; low-certainty evidence) compared with usual care, with substantial heterogeneity in effect size. Both DRS-targeted (RD 0.17, 95% CI 0.11 to 0.22) and general QI interventions (RD 0.12, 95% CI 0.09 to 0.15) were effective, particularly where baseline DRS attendance was low. All BCT combinations were associated with significant improvements, particularly in those with poor attendance. We found higher effect estimates in subgroup analyses for the BCTs 'goal setting (outcome)' (RD 0.26, 95% CI 0.16 to 0.36) and 'feedback on outcomes of behaviour' (RD 0.22, 95% CI 0.15 to 0.29) in interventions targeting patients, and 'restructuring the social environment' (RD 0.19, 95% CI 0.12 to 0.26) and 'credible source' (RD 0.16, 95% CI 0.08 to 0.24) in interventions targeting healthcare professionals.Ten studies (23,715 participants) compared a more intensive (stepped) intervention versus a less intensive intervention. In these studies DRS attendance increased by 5% (RD 0.05, 95% CI 0.02 to 0.09; moderate-certainty evidence).Fourteen studies reporting any QI intervention compared to usual care included economic outcomes. However, only five of these were full economic evaluations. Overall, we found that there is insufficient evidence to draw robust conclusions about the relative cost effectiveness of the interventions compared to each other or against usual care.With the exception of gender and ethnicity, the characteristics of participants were poorly described in terms of PROGRESS elements. Seventeen studies (25.8%) were conducted in disadvantaged populations. No studies were carried out in low- or middle-income countries.AUTHORS' CONCLUSIONS: The results of this review provide evidence that QI interventions targeting patients, healthcare professionals or the healthcare system are associated with meaningful improvements in DRS attendance compared to usual care. There was no statistically significant difference between interventions specifically aimed at DRS and those which were part of a general QI strategy for improving diabetes care. This is a significant finding, due to the additional benefits of general QI interventions in terms of improving glycaemic control, vascular risk management and screening for other microvascular complications. It is likely that further (but smaller) improvements in DRS attendance can also be achieved by increasing the intensity of a particular QI component or adding further components.</p

    Draft Genome Sequencing of Three Glutaraldehyde-Tolerant Bacteria from Produced Water from Hydraulic Fracturing

    Get PDF
    Here, we report the draft genome sequence of three glutaraldehyde-resistant isolates from produced water from hydraulic fracturing operations. The three strains were identified as sp. strain G11, sp. strain G15, and sp. strain G16. The genome sequences of these isolates will provide insights into biocide resistance in hydraulic fracturing operations

    Single Feature Polymorphism Discovery in Rice

    Get PDF
    The discovery of nucleotide diversity captured as single feature polymorphism (SFP) by using the expression array is a high-throughput and effective method in detecting genome-wide polymorphism. The efficacy of such method was tested in rice, and the results presented in the paper indicate high sensitivity in predicting SFP. The sensitivity of polymorphism detection was further demonstrated by the fact that no biasness was observed in detecting SFP with either single or multiple nucleotide polymorphisms. The high density SFP data that can be generated quite effectively by the current method has promise for high resolution genetic mapping studies, as physical location of features are well-defined on rice genome

    Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane

    Get PDF
    We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor

    Live inhibition of Cdc42 in HCC1954 cells transiently expressing Raichu-Cdc42 biosensor.

    No full text
    <p>Fluorescence intensity (A, left) and acceptor fluorescence anisotropy maps (A, right) of live HCC1954 cells transiently expressing Raichu-Cdc42 biosensor before (A. top) and after (A. bottom) addition of Cdc42 inhibitor. The scale bar represents 5 µm. (B) Corresponding representative histograms of the fluorescence acceptor anisotropy before (A top right) and after inhibition (A bottom right) are shown. (C) Time lapse of acceptor fluorescence anisotropy (±SD) after 30 µM addition of Cdc42 inhibitor for cell expressing respectively Raichu-Cdc42 biosensor (pink), Cdc42 (blue) or after addition of 30 µM DMSO for cell expressing Raichu-Cdc42 biosensor (green). Images were taken every 5 minutes (200 ms exposure for EMCCD) for 50 minutes. (D) Ensemble steady state acceptor fluorescence anisotropy values obtained on HCC1954 cells expressing Raichu-Cdc42biosensor before (pre) and after (post) addition of Cdc42 inhibitor, or before and after addition of DMSO, or for cells expressing Cdc42 before and after addition of Cdc42 inhibitor. Cells were imaged live at 37°C, excited in TIRF excitation.</p

    Steady-state fluorescence anisotropy of Rhodamine B solutions of different viscosities.

    No full text
    <p><i>r<sub>spectro</sub></i>: fluorescence anisotropy measured using a spectrofluorometer. <i>r<sub>4x</sub></i>, <i>r<sub>60x</sub><sup>EPI</sup>, r<sub>60x</sub><sup>TIRF</sup></i>: fluorescence anisotropy (average ±SD, N = 5), measured with objective 4× (NA = 0.13), objective 60× (NA = 1.49) in epifluorescence and in TIRF excitation respectively, without correcting for high NA depolarisation (ie <i>x<sub>NA</sub></i> = 2). SD: Standard deviation.</p><p>Steady-state fluorescence anisotropy of Rhodamine B solutions of different viscosities.</p

    Steady state fluorescence anisotropy of Rhodamine B solutions of different viscosities for objectives with different NA.

    No full text
    <p>(A) Variations of the steady state fluorescence anisotropy of solutions of Rhodamine B with different viscosities for objectives with different NA, Objective 4× (NA = 0.13), Objective 60× (NA = 1.49) in epifluorescence and in TIRF excitation without correcting for the depolarisation induced by the high NA objective (<i>x<sub>NA</sub></i> = 2). Fluorescence anisotropy variations with viscosity are shown in (A) and for the different objectives and excitations (B). Each anisotropy value is the average of 5 measurements made on each solution. The average and SD are represented.</p
    corecore