51 research outputs found

    Overexpression of Krüppel-Like Factor 9 Enhances the Antitumor Properties of Paclitaxel in Malignant Melanoma-Derived Cell Lines

    No full text
    Over the past decade, the treatment of metastatic melanoma has improved significantly due to the development of innovative therapies, such as drugs that target the BRAF/MAPK kinase pathway and the PD-1 pathway. However, these therapies do not work for all patients, highlighting the need for additional research on the pathophysiology of melanoma. Paclitaxel is a chemotherapeutic agent used when first-line treatments are unsuccessful; however, its efficacy is limited. Since Krüppel-like factor 9 (KLF9) (antioxidant repressor) is downregulated in melanoma, we propose that restoring KLF9 levels may sensitize malignant melanoma to chemotherapeutic agents, such as paclitaxel. We used adenovirus overexpression and siRNA technologies to assess the role of KLF9 in mediating the response of malignant melanoma-derived cell lines RPMI-7951 and A375 to paclitaxel treatment. We found that increasing KLF9 levels potentiates the effectiveness of paclitaxel, as shown by apoptotic parameters such as decreased cell viability, pro-caspase-3 activation, increased number of annexin V-positive cells, and reduction in nuclear proliferation marker (KI67). These results suggest that KLF9 may be a potential target for improving chemotherapeutic response in melanoma

    Optimizing combination therapy in prostate cancer: mechanistic insights into the synergistic effects of Paclitaxel and Sulforaphane-induced apoptosis

    No full text
    Abstract Background Combination therapies in cancer treatment have demonstrated synergistic or additive outcomes while also reducing the development of drug resistance compared to monotherapy. This study explores the potential of combining the chemotherapeutic agent Paclitaxel (PTX) with Sulforaphane (SFN), a natural compound primarily found in cruciferous vegetables, to enhance treatment efficacy in prostate cancer. Methods Two prostate cancer cell lines, PC-3 and LNCaP, were treated with varying concentrations of PTX, SFN, and their combination. Cell viability was assessed using the thiazolyl blue tetrazolium bromide (MTT) assay to determine the EC50 values. Western blot analysis was conducted to evaluate the expression of Bax, Bcl2, and Caspase-3 activation proteins in response to individual and combined treatments of PTX and SFN. Fluorescent microscopy was employed to observe morphological changes indicative of apoptotic stress in cell nuclei. Flow cytometry analysis was utilized to assess alterations in cell cycle phases, such as redistribution and arrest. Statistical analyses, including Student’s t-tests and one-way analysis of variance with Tukey’s correction, were performed to determine significant differences between mono- and combination treatments. Results The impact of PTX, SFN, and their combination on cell viability reduction was evaluated in a dose-dependent manner. The combined treatment enhanced PTX’s effects and decreased the EC50 values of both drugs compared to individual treatments. PTX and SFN treatments differentially regulated the expression of Bax and Bcl2 proteins in PC-3 and LNCaP cell lines, favoring apoptosis over cell survival. Our data indicated that combination therapy significantly increased Bax protein expression and the Bax/Bcl2 ratio compared to PTX or SFN alone. Flow cytometry analysis revealed alterations in cell cycle phases, including S-phase arrest and an increased population of apoptotic cells. Notably, the combination treatments did not have a discernible impact on necrotic cells. Signs of apoptotic cell death were confirmed through Caspase-3 cleavage, and morphological changes in cell nuclei were assessed via western blot and fluorescent microscopy. Conclusion This combination therapy of PTX and SFN has the potential to improve prostate cancer treatment by minimizing side effects while maintaining efficacy. Mechanistic investigations revealed that SFN enhances PTX efficacy by promoting apoptosis, activating caspase-3, inducing nuclear morphology changes, modulating the cell cycle, and altering Bax and Bcl2 protein expression. These findings offer valuable insights into the synergistic effects of PTX and SFN, supporting the optimization of combination therapy and providing efficient therapeutic strategies in preclinical research

    Long-acting β 2

    No full text

    Long-acting β2-adrenoceptor agonists enhance glucocorticoid receptor (GR)-mediated transcription by gene-specific mechanisms rather than generic effects via GR

    No full text
    In asthma, the clinical efficacy of inhaled corticosteroids (ICSs) is enhanced by long-acting β2-adrenoceptor agonists (LABAs). ICSs, or more accurately, glucocorticoids, promote therapeutically relevant changes in gene expression, and, in primary human bronchial epithelial cells (pHBECs) and airway smooth muscle cells, this genomic effect can be enhanced by a LABA. Modeling this interaction in human bronchial airway epithelial BEAS-2B cells transfected with a 2× glucocorticoid response element (2×GRE)-driven luciferase reporter showed glucocorticoid-induced transcription to be enhanced 2- to 3-fold by LABA. This glucocorticoid receptor (GR; NR3C1)-dependent effect occurred rapidly, was insensitive to protein synthesis inhibition, and was maximal when glucocorticoid and LABA were added concurrently. The ability of LABA to enhance GR-mediated transcription was not associated with changes in GR expression, serine (Ser203, Ser211, Ser226) phosphorylation, ligand affinity, or nuclear translocation. Chromatin immunoprecipitation demonstrated that glucocorticoid-induced recruitment of GR to the integrated 2×GRE reporter and multiple gene loci, whose mRNAs were unaffected or enhanced by LABA, was also unchanged by LABA. Transcriptomic analysis revealed glucocorticoid-induced mRNAs were variably enhanced, unaffected, or repressed by LABA. Thus, events leading to GR binding at target genes are not the primary explanation for how LABAs modulate GR-mediated transcription. As many glucocorticoid-induced genes are independently induced by LABA, gene-specific control by GR- and LABA-activated transcription factors may explain these observations. Because LABAs promote similar effects in pHBECs, therapeutic relevance is likely. These data illustrate the need to understand gene function(s), and the mechanisms leading to gene-specific induction, if existing ICS/LABA combination therapies are to be improved.FWN – Publicaties zonder aanstelling Universiteit Leide
    • …
    corecore