7,403 research outputs found
Branching processes, the max-plus algebra and network calculus
Branching processes can describe the dynamics of various queueing systems, peer-to-peer systems, delay tolerant networks, etc. In this paper we study the basic stochastic recursion of multitype branching processes, but in two non-standard contexts. First, we consider this recursion in the max-plus algebra where branching corresponds to finding the maximal offspring of the current generation. Secondly, we consider network-calculus-type deterministic bounds as introduced by Cruz, which we extend to handle branching-type processes. The paper provides both qualitative and quantitative results and introduces various applications of (max-plus) branching processes in queueing theory
Memo from David Altman and Mike Watt: 1998-02-04
Memo from David Altman and Mike Watt to Mayor William Card, Shirley Clowers, and Randy Whittington regarding the suggested work plan and proposal development timetable.https://scholarworks.utrgv.edu/hcard/1163/thumbnail.jp
Memo from David Altman and Mike Watt: 1998-02-04
Memo from David Altman and Mike Watt regarding suggested work plan and task force organization.https://scholarworks.utrgv.edu/hcard/1220/thumbnail.jp
Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons
Low-energy electron microscopy (LEEM) was used to measure the reflectivity of
low-energy electrons from graphitized SiC(0001). The reflectivity shows
distinct quantized oscillations as a function of the electron energy and
graphite thickness. Conduction bands in thin graphite films form discrete
energy levels whose wave vectors are normal to the surface. Resonance of the
incident electrons with these quantized conduction band states enhances
electrons to transmit through the film into the SiC substrate, resulting in
dips in the reflectivity. The dip positions are well explained using
tight-binding and first-principles calculations. The graphite thickness
distribution can be determined microscopically from LEEM reflectivity
measurements.Comment: 7 pages, 3 figure
Exchange bias and interface electronic structure in Ni/Co3O4(011)
A detailed study of the exchange bias effect and the interfacial electronic
structure in Ni/Co3O4(011) is reported. Large exchange anisotropies are
observed at low temperatures, and the exchange bias effect persists to
temperatures well above the Neel temperature of bulk Co3O4, of about 40 K: to
~80 K for Ni films deposited on well ordered oxide surfaces, and ~150 K for Ni
films deposited on rougher Co3O4 surfaces. Photoelectron spectroscopy
measurements as a function of Ni thickness show that Co reduction and Ni
oxidation occur over an extended interfacial region. We conclude that the
exchange bias observed in Ni/Co3O4, and in similar ferromagnetic metallic/Co3O4
systems, is not intrinsic to Co3O4 but rather due to the formation of CoO at
the interface.Comment: 8 pages, 6 figures. Accepted for publication in Physical Review B
Precipitation scatter interference between space and terrestrial communication systems
Transmission loss from precipitation scatter interference between space and earth communication system
Trusty URIs: Verifiable, Immutable, and Permanent Digital Artifacts for Linked Data
To make digital resources on the web verifiable, immutable, and permanent, we
propose a technique to include cryptographic hash values in URIs. We call them
trusty URIs and we show how they can be used for approaches like
nanopublications to make not only specific resources but their entire reference
trees verifiable. Digital artifacts can be identified not only on the byte
level but on more abstract levels such as RDF graphs, which means that
resources keep their hash values even when presented in a different format. Our
approach sticks to the core principles of the web, namely openness and
decentralized architecture, is fully compatible with existing standards and
protocols, and can therefore be used right away. Evaluation of our reference
implementations shows that these desired properties are indeed accomplished by
our approach, and that it remains practical even for very large files.Comment: Small error corrected in the text (table data was correct) on page
13: "All average values are below 0.8s (0.03s for batch mode). Using Java in
batch mode even requires only 1ms per file.
Interplay between Microorganisms and Geochemistry in Geological Carbon Storage
Citation: Kirk, MF, Altman, SJ, Santillan, EFU, Bennett, PC (2016) Interplay between microorganisms and geochemistry in geological carbon storage. International Journal of Greenhouse Gas Control 47, 386-395.Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. We conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research
Dynamical properties of ultracold bosons in an optical lattice
We study the excitation spectrum of strongly correlated lattice bosons for
the Mott-insulating phase and for the superfluid phase close to localization.
Within a Schwinger-boson mean-field approach we find two gapped modes in the
Mott insulator and the combination of a sound mode (Goldstone) and a gapped
(Higgs) mode in the superfluid. To make our findings comparable with
experimental results, we calculate the dynamic structure factor as well as the
linear response to the optical lattice modulation introduced by Stoeferle et
al. [Phys. Rev. Lett. 92, 130403 (2004)]. We find that the puzzling finite
frequency absorption observed in the superfluid phase could be explained via
the excitation of the gapped (Higgs) mode. We check the consistency of our
results with an adapted f-sum-rule and propose an extension of the experimental
technique by Stoeferle et al. to further verify our findings.Comment: 13 pages, 5 figure
Survey of the quality of experimental design, statistical analysis and reporting of research using animals
For scientific, ethical and economic reasons, experiments involving animals should be appropriately designed, correctly analysed and transparently reported. This increases the scientific validity of the results, and maximises the knowledge gained from each experiment. A minimum amount of relevant information must be included in scientific publications to ensure that the methods and results of a study can be reviewed, analysed and repeated. Omitting essential information can raise scientific and ethical concerns. We report the findings of a systematic survey of reporting, experimental design and statistical analysis in published biomedical research using laboratory animals. Medline and EMBASE were searched for studies reporting research on live rats, mice and non-human primates carried out in UK and US publicly funded research establishments. Detailed information was collected from 271 publications, about the objective or hypothesis of the study, the number, sex, age and/or weight of animals used, and experimental and statistical methods. Only 59% of the studies stated the hypothesis or objective of the study and the number and characteristics of the animals used. Appropriate and efficient experimental design is a critical component of high-quality science. Most of the papers surveyed did not use randomisation (87%) or blinding (86%), to reduce bias in animal selection and outcome assessment. Only 70% of the publications that used statistical methods described their methods and presented the results with a measure of error or variability. This survey has identified a number of issues that need to be addressed in order to improve experimental design and reporting in publications describing research using animals. Scientific publication is a powerful and important source of information; the authors of scientific publications therefore have a responsibility to describe their methods and results comprehensively, accurately and transparently, and peer reviewers and journal editors share the responsibility to ensure that published studies fulfil these criteria
- …