117 research outputs found

    Magnetism and Piezoelectricity in Stable Transition Metal Silicate Monolayers

    Full text link
    Two-dimensional van der Waals (2D vdW) materials that display ferromagnetism and piezoelectricity have received increased attention. Despite numerous 2D materials have so far been reported as ferromagnetic, developing an air stable and transferable vdW material that is multiferroic has been challenging. To address this problem, we report our work on layered transition metal silicates that are derivatives of kaolinites and lizardites with transition metal substituting on Al3+^{3+} and Mg2+^{2+} sites using ab-initio calculations. Using Density Functional Theory (DFT), we show that these compounds are stable under varying O2_2 partial pressure and can be synthesized using a surface assisted method. We show that these materials have finite out-of-plane piezoelectric response thanks to the lack of inversion symmetry and also they can be tailored to be ferrimagnetic with a non-zero net moment

    Interfacial properties between CoO (100) and Fe(3)O(4) (100)

    Get PDF
    Using molecular beam epitaxy 1-20 ML thick CoO (100) films were grown monolayer by monolayer on Fe(3)O(4) (100) substrates. The stoichiometry of the films was verified by low-energy-electron diffraction and reflection-high-energy-electron diffraction patterns, as well as x-ray photoelectron spectroscopy. Auger measurements as a function of CoO film thickness indicated a layer-by-layer growth mode. Ultraviolet photoelectron spectroscopy (UPS) was used to monitor the thin film electronic properties. The evolution of the density of states in the O 2p/Fe 3d and O 2p/Co 3d bands exhibits a shift in the position of the CoO valence band for ultrathin films relative to bulklike thick films. The measured spectra (when aligned to cancel the band shift) are compared to models of the spectra that would be expected based on the bulk compounds, with and without additional interfacial electronic states. Electronic states at the Fe(3)O(4)-CoO interface have been identified, and their UPS spectrum has been determined

    Measurement of electronic structure at nanoscale solid-solid interfaces by surface-sensitive electron spectroscopy

    Get PDF
    We explore the use of electron spectroscopy that samples the near-surface region of a crystal to study the electronic structure at the buried interfaces between two dissimilar transition-metal oxides. The interface is probed by comparing experimental ultraviolet photoelectron spectra to model spectra and by taking sequential differences between the experimental spectra as one oxide is grown on another. Using (100) Fe(3)O(4)-NiO and Fe(3)O(4)-CoO interfaces grown by molecular beam epitaxy, we show that there is a much higher density of electronic states at the Fe(3)O(4)-CoO interface than at the Fe(3)O(4)-NiO interface. The origin of this difference is discussed. (C) 2008 American Institute of Physics

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved

    Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice

    Get PDF
    Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications from high temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers due to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we employ a degenerate Bose gas confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary an applied field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase the interaction between the spins is overwhelmed by the applied field which aligns the spins. In the antiferromagnetic phase the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in-situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, improving our understanding of real magnetic materials.Comment: 12 pages, 9 figure

    Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    Get PDF
    Abstract Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions

    Functional Analysis: Evaluation of Response Intensities - Tailoring ANOVA for Lists of Expression Subsets

    Get PDF
    Background: Microarray data is frequently used to characterize the expression profile of a whole genome and to compare the characteristics of that genome under several conditions. Geneset analysis methods have been described previously to analyze the expression values of several genes related by known biological criteria (metabolic pathway, pathology signature, co-regulation by a common factor, etc.) at the same time and the cost of these methods allows for the use of more values to help discover the underlying biological mechanisms. Results: As several methods assume different null hypotheses, we propose to reformulate the main question that biologists seek to answer. To determine which genesets are associated with expression values that differ between two experiments, we focused on three ad hoc criteria: expression levels, the direction of individual gene expression changes (up or down regulation), and correlations between genes. We introduce the FAERI methodology, tailored from a two-way ANOVA to examine these criteria. The significance of the results was evaluated according to the self-contained null hypothesis, using label sampling or by inferring the null distribution from normally distributed random data. Evaluations performed on simulated data revealed that FAERI outperforms currently available methods for each type of set tested. We then applied the FAERI method to analyze three real-world datasets on hypoxia response. FAERI was able to detect more genesets than other methodologies, and the genesets selected were coherent with current knowledge of cellular response to hypoxia. Moreover, the genesets selected by FAERI were confirmed when the analysis was repeated on two additional related datasets. Conclusions: The expression values of genesets are associated with several biological effects. The underlying mathematical structure of the genesets allows for analysis of data from several genes at the same time. Focusing on expression levels, the direction of the expression changes, and correlations, we showed that two-step data reduction allowed us to significantly improve the performance of geneset analysis using a modified two-way ANOVA procedure, and to detect genesets that current methods fail to detect
    corecore