451 research outputs found
Effect of dentin desensitizing procedures on methyl methacrylate diffusion through dentin
Background: Acrylic and bisacryl resins are widely used both during the temporization phase as well as for provisional restorations and the effect of external agents on dentin sensitivity can be reduced by the obliteration of the tubules.Objective: The purpose of this study was to evaluate diffusion of methyl methacrylate monomer through dentin by high performance liquid chromatography (HPLC) after three different desensitizing procedures during the fabrication of two different provisional crown materials.Materials and Methods: Forty extracted restoration and caries free human premolar teeth were used in this study. Thermoplastic vacuum formed material was used as a matrix to fabricate provisional restorations for each tooth before crown preparation. Teeth were prepared for a metal supported ceramic crown with 1 mm shoulder margins and then crown parts were separated from cementoenamel junction with a carborundum disk perpendicular to the long axis of the teeth. To the cementoenamel junction of each tooth a polypropylene chamber was attached that contains 1.5 cm3of deionized distilled water. Prepared teeth were divided into four groups (n = 10) including control, desensitizing agent (DA) application, neodymium.doped yttrium aluminum garnet (Nd: YAG) laser irradiation (LI), and LI after DA application groups. After application of DA (except control) each group were divided into two subgroups for fabrication of provisional restorations (n = 5). Two autopolymerizing provisional materials (Imident (Imicryl) and Systemp C and B (Ivoclar, vivadent)) were used to fabricate provisional restorations using the strips. Water elutes were analyzed by HPLC at 10 min and 24 h.Results: The monomer diffusion values varied statistically according to desensitizing procedures, provisional resin systems, and the time periods. Monomer diffusion through dentin surfaces desensitized with Nd: YAG LI after DA application was the lowest.Conclusions: Nd: YAG LI in association with DA application is an effective combination to eliminate monomer diffusion through dentin to pulpal chamber.Key words: Dentin hypersensitivity, dentin permeability, laser, monomer diffusion, provisional crow
RAFT-based polystyrene and polyacrylate melts under thermal and mechanical stress
Although controlled/living radical polymerization processes have significantly facilitated the synthesis of well-defined low polydispersity polymers with specific functionalities, a detailed and systematic knowledge of the thermal stability of the products-highly important for most industrial processes-is not available. Linear polystyrene (PS) carrying a trithiocarbonate mid-chain functionality (thus emulating the structure of the Z-group approach via reversible addition-fragmentation chain transfer (RAFT) based macromolecular architectures) with various chain lengths (20 kDa ≤ Mn,SEC ≤ 150 kDa, 1.27 ≤ Crossed D sign = Mw/Mn ≤ 1.72) and chain-end functionality were synthesized via RAFT polymerization. The thermal stability behavior of the polymers was studied at temperatures ranging from 100 to 200 C for up to 504 h (3 weeks). The thermally treated polymers were analyzed via size exclusion chromatography (SEC) to obtain the dependence of the polymer molecular weight distribution on time at a specific temperature under air or inert atmospheres. Cleavage rate coefficients of the mid-chain functional polymers in inert atmosphere were deduced as a function of temperature, resulting in activation parameters for two disparate Mn starting materials (Ea = 115 ± 4 kJ·mol-1, A = 0.85 × 109 ± 1 × 109 s-1, M n,SEC = 21 kDa and Ea = 116 ± 4 kJ·mol -1, A = 6.24 × 109 ± 1 × 109 s-1, Mn,SEC = 102 kDa). Interestingly, the degradation proceeds significantly faster with increasing chain length, an observation possibly associated with entropic effects. The degradation mechanism was explored in detail via SEC-ESI-MS for acrylate based polymers and theoretical calculations suggesting a Chugaev-type cleavage process. Processing of the RAFT polymers via small scale extrusion as well as a rheological assessment at variable temperatures allowed a correlation of the processing conditions with the thermal degradation properties of the polystyrenes and polyacrylates in the melt. © 2013 American Chemical Society.C.B.-K and M.W. gratefully acknowledge financial support from
the German Research Council (DFG). M.L.C gratefully
acknowledges generous allocations of supercomputing time
from the Australian National Computing Facility, financial
support from the Australian Research Council (ARC) Centre of
Excellence for Free-radical Chemistry and Biotechnology and
an ARC Future Fellowship. C.B.-K. acknowledges additional
funding from the Karlsruhe Institute of Technology (KIT) in
the context of the Helmholtz programs
End-to-End V2X Latency Modeling and Analysis in 5G Networks
networks provide higher flexibility and improved performance compared to previous cellular technologies. This has raised expectations on the possibility to support advanced Vehicle to Everything (V2X) services using the cellular network via Vehicle-to-Network (V2N) and Vehicle-to-Network-to-Vehicle (V2N2V) connections. The possibility to support critical V2X services using 5G V2N2V or V2N connections depends on their end-to-end (E2E) latency. The E2E latency of V2N2V or V2N connections depends on the particular 5G network deployment, dimensioning and configuration, in addition to the network load. To date, few studies have analyzed the capabilities of V2N2V or V2N connections to support critical V2X services, and most of them focus on the 5G radio access network or consider dedicated 5G pilot deployments under controlled conditions. This paper progresses the state-of-the-art by introducing a novel E2E latency model to quantify the latency of 5G V2N and V2N2V communications. The model includes the latency introduced at the radio, transport, core, Internet, peering points and application server (AS) when vehicles are supported by a single mobile network operator (MNO) and when they are supported by multiple MNOs. The model can quantify the latency experienced when the V2X AS is deployed from the edge of the network (using MEC platforms) to the cloud. Using this model, this study estimates the E2E latency of 5G V2N2V connections for a large variety of possible 5G network deployments and configurations. The analysis helps identify which 5G network deployments and configurations are more suitable to meet V2X latency requirements. To this aim, we consider as case study the cooperative lane change service. The conducted analysis highlights the challenge for centralized network deployments that locate the V2X AS at the cloud to meet the latency requirements of advanced V2X services. Locating the V2X AS closer to the cell edge reduces the latency. However, it requires a higher number of ASs and also a careful dimensioning of the network and its configuration to ensure sufficient network and AS resources are dedicated to serve the V2X traffic
Overview on the phenomenon of two-qubit entanglement revivals in classical environments
The occurrence of revivals of quantum entanglement between separated open
quantum systems has been shown not only for dissipative non-Markovian quantum
environments but also for classical environments in absence of back-action.
While the phenomenon is well understood in the first case, the possibility to
retrieve entanglement when the composite quantum system is subject to local
classical noise has generated a debate regarding its interpretation. This
dynamical property of open quantum systems assumes an important role in quantum
information theory from both fundamental and practical perspectives. Hybrid
quantum-classical systems are in fact promising candidates to investigate the
interplay among quantum and classical features and to look for possible control
strategies of a quantum system by means of a classical device. Here we present
an overview on this topic, reporting the most recent theoretical and
experimental results about the revivals of entanglement between two qubits
locally interacting with classical environments. We also review and discuss the
interpretations provided so far to explain this phenomenon, suggesting that
they can be cast under a unified viewpoint.Comment: 16 pages, 9 figures. Chapter written for the upcoming book "Lectures
on general quantum correlations and their applications
Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma
BACKGROUND: This study was performed to compare levels of serum homocysteine (Hcy), vitamin B12 and folic acid in patients with primary open-angle glaucoma (POAG), pseudoexfoliative glaucoma (PEXG), normotensive glaucoma (NTG) and healthy controls. METHODS: Twentyfive patients with POAG, 24 with PEXG, and 18 with NTG, along with 19 control healthy subjects were included this prospective study. Levels of serum Hcy were measured using immunoassay, and those of serum vitamin B12 and folic acid were measured using competitive chemiluminescent enzyme immunoassay. RESULTS: The mean Hcy concentration in the PEXG group was significantly higher (P < 0.001) as compared to the other groups. There were no significant differences with respect to the mean Hcy concentrations among other groups (P > 0.05). There were no statistical differences in serum vitamin B12 levels among POAG, PEXG, NTG and control subjects (P > 0.05). The mean serum folic acid level was significantly lower in the subjects with PEXG (P < 0.009). However, the mean folic acid concentrations among the other groups did not differ significantly (P > 0.05). CONCLUSION: Elevated levels of Hcy in PEXG may explain the role of endothelial dysfunction among patients with PEXG
In Vivo Evaluation of Retinal Neurodegeneration in Patients with Multiple Sclerosis
To evaluate macular morphology in the eyes of patients with multiple sclerosis (MS) with or without optic neuritis (ON) in previous history.Optical coherence tomography (OCT) examination was performed in thirty-nine patients with MS and in thirty-three healthy subjects. The raw macular OCT data were processed using OCTRIMA software. The circumpapillary retinal nerve fiber layer (RNFL) thickness and the weighted mean thickness of the total retina and 6 intraretinal layers were obtained for each eye. The eyes of MS patients were divided into a group of 39 ON-affected eyes, and into a group of 34 eyes with no history of ON for the statistical analyses. Receiver operating characteristic (ROC) curves were constructed to determine which parameter can discriminate best between the non-affected group and controls.The circumpapillary RNFL thickness was significantly decreased in the non-affected eyes compared to controls group only in the temporal quadrant (p = 0.001) while it was decreased in the affected eyes of the MS patients in all quadrants compared to the non-affected eyes (p<0.05 in each comparison). The thickness of the total retina, RNFL, ganglion cell layer and inner plexiform layer complex (GCL+IPL) and ganglion cell complex (GCC, comprising the RNFL and GCL+IPL) in the macula was significantly decreased in the non-affected eyes compared to controls (p<0.05 for each comparison) and in the ON-affected eyes compared to the non-affected eyes (p<0.001 for each comparison). The largest area under the ROC curve (0.892) was obtained for the weighted mean thickness of the GCC. The EDSS score showed the strongest correlation with the GCL+IPL and GCC thickness (p = 0.007, r = 0.43 for both variables).Thinning of the inner retinal layers is present in eyes of MS patients regardless of previous ON. Macular OCT image segmentation might provide a better insight into the pathology of neuronal loss and could therefore play an important role in the diagnosis and follow-up of patients with MS
Multicentre comparison of a diagnostic assay: Aquaporin-4 antibodies in neuromyelitis optica
Objective Antibodies to cell surface central nervous system proteins help to diagnose conditions which often respond to immunotherapies. The assessment of antibody assays needs to reflect their clinical utility. We report the results of a multicentre study of aquaporin (AQP) 4 antibody (AQP4-Ab) assays in neuromyelitis optica spectrum disorders (NMOSD). Methods Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4), immunohistochemistry (n=3) and ELISA (n=1). Results Results of tests on 92 controls identified 12assays as highly specific (0-1 false-positive results). 32 samples from 50 (64%) NMO sera and 34 from 51 (67%) NMOSD sera were positive on at least two of the 12 highly specific assays, leaving 35 patients with seronegative NMO/spectrum disorder (SD). On the basis of a combination of clinical phenotype and the highly specific assays, 66 AQP4-Ab seropositive samples were used to establish the sensitivities (51.5-100%) of all 21 assays. The specificities (85.8-100%) were based on 92 control samples and 35 seronegative NMO/SD patient samples. Conclusions The cell-based assays were most sensitive and specific overall, but immunohistochemistry or flow cytometry could be equally accurate in specialist centres. Since patients with AQP4-Ab negative NMO/SD require different management, the use of both appropriate control samples and defined seronegative NMOSD samples is essential to evaluate these assays in a clinically meaningful way. The process described here can be applied to the evaluation of other antibody assays in the newly evolving field of autoimmune neurology
The use of nanocrystal quantum dot as fluorophore reporters in molecular beacon-based assays
textversion:publishe
A new damping modelling approach and its application in thin wall machining
In this paper, a new approach to modelling the
damping parameters and its application in thin wall
machining is presented. The approach to predicting the
damping parameters proposed in this paper eliminates the
need for experiments otherwise used to acquire these
parameters. The damping model proposed was compared
with available damping models and experimental results. A
finite element analysis and Fourier transform approach has
been used to obtain frequency response function (FRF)
needed for stability lobes prediction. Several predicted
stable regions using both experimental and numerical
FRF’s for various examples gave a good comparison.Engineering and Physical Sciences Research Counci
- …