1,326 research outputs found

    Maryland\u27s New Condemnation Code

    Get PDF

    Role of KIR3DS1 in Human Diseases

    Get PDF
    The function of natural killer (NK) cells is controlled by several activating and inhibitory receptors, including the family of killer-immunoglobulin-like receptors (KIRs). One distinctive feature of KIRs is the extensive number of various haplotypes generated by the gene content within the KIR gene locus as well as by highly polymorphic members of the KIR gene family, namely KIR3DL1/S1. Within the KIR3DL1/S1 gene locus, KIR3DS1 represents a conserved allelic variant and displays other unique features in comparison to the highly polymorphic KIR3DL1 allele. KIR3DS1 is present in all human populations and belongs to the KIR haplotype group B. KIR3DS1 encodes for an activating receptor featuring the characteristic short cytoplasmic tail and a positively charged residue within the transmembrane domain, which allows recruitment of the ITAM-bearing adaptor molecule DAP12. Although HLA class I molecules are thought to represent natural KIR ligands, and HLA-Bw4 molecules serve as ligands for KIR3DL1, the ligand for KIR3DS1 still needs to be identified. Despite the lack of formal evidence for an interaction of KIR3DS1 with HLA-Bw4-I80 or any other HLA class I subtype to date, a growing number of associations between the presence of KIR3DS1 and the outcome of viral infections have been described. Especially, the potential protective role of KIR3DS1 in combination with HLA-Bw4-I80 in the context of HIV-1 infection has been studied intensively. In addition, a number of recent studies have associated the presence or absence of KIR3DS1 with the occurrence and outcome of some malignancies, autoimmune diseases, and graft-versus-host disease (GVHD). In this review, we summarize the present knowledge regarding the characteristics of KIRD3S1 and discuss its role in various human diseases

    Are German coaches highly exhausted? A study of differences in personal and environmental factors

    Get PDF
    Previous research has produced equivocal findings in regard to personal and environmental parameters influencing coaches’ perceptions of stress and burnout levels. Moreover, there is a paucity of studies examining these factors in European professional sport contexts. This study investigated the influence of person-related (e.g., age, hours per week, level of recovery, coaching alternatives, experience as an assistant), sport-related (e.g., type of sport, working in youth or senior section, level of performing), and perception-related variables (e.g., feeling of meaningfulness, financial security) in relation to burnout of German full-time coaches. One-hundred and fifty eight coaches of different sports and levels completed a demographical survey, a German coaches’ version of the Maslach Burnout Inventory, and the Recovery-Stress Questionnaire for Coaches. Two contrasting groups were formed to compare coaches with the lowest scores in Emotional Exhaustion (lowest 20%) and the highest scores in Emotional Exhaustion (highest 20%). Overall Stress (β = 3.92, p < .001) and Overall Recovery (β = -2.86, p < .001) demonstrated significant effects on Emotional Exhaustion within multiple regression analysis. Moreover, the variables sense of well-being (r = -.46, p < .001), feeling of meaningfulness (r = -.28, p < .001) showed significant relationships to the key burnout symptom of Emotional Exhaustion. The extreme group comparison indicated significant differences in person-related and perception-related parameters. Recovery as well as social support might be important in managing stress in the challenging work environments of full-time coaches. Additionally, the perception of the current coaching job might be more important than context-related variables (e.g., type of sport, level)

    A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells

    Get PDF
    Viral mutational escape can reduce or abrogate recognition by the T cell receptor (TCR) of virus-specific CD8+ T cells. However, very little is known about the impact of cytotoxic T lymphocyte (CTL) epitope mutations on interactions between peptide–major histocompatibility complex (MHC) class I complexes and MHC class I receptors expressed on other cell types. Here, we analyzed a variant of the immunodominant human leukocyte antigen (HLA)-B2705–restricted HIV-1 Gag KK10 epitope (KRWIILGLNK) with an L to M amino acid substitution at position 6 (L6M), which arises as a CTL escape variant after primary infection but is sufficiently immunogenic to elicit a secondary, de novo HIV-1–specific CD8+ T cell response with an alternative TCR repertoire in chronic infection. In addition to altering recognition by HIV-1–specific CD8+ T cells, the HLA-B2705–KK10 L6M complex also exhibits substantially increased binding to the immunoglobulin-like transcript (ILT) receptor 4, an inhibitory MHC class I–specific receptor expressed on myelomonocytic cells. Binding of the B2705–KK10 L6M complex to ILT4 leads to a tolerogenic phenotype of myelomonocytic cells with lower surface expression of dendritic cell (DC) maturation markers and co-stimulatory molecules. These data suggest a link between CTL-driven mutational escape, altered recognition by innate MHC class I receptors on myelomonocytic cells, and functional impairment of DCs, and thus provide important new insight into biological consequences of viral sequence diversificatio

    Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in Human Immunodeficiency Virus Type 1 infection

    Get PDF
    Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8+ T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes

    Modeling viral coevolution: HIV multi-clonal persistence and competition dynamics

    Get PDF
    The coexistence of different viral strains (quasispecies) within the same host are nowadays observed for a growing number of viruses, most notably HIV, Marburg and Ebola, but the conditions for the formation and survival of new strains have not yet been understood. We present a model of HIV quasispecies competition, that describes the conditions of viral quasispecies coexistence under different immune system conditions. Our model incorporates both T and B cells responses, and we show that the role of B cells is important and additive to that of T cells. Simulations of coinfection (simultaneous infection) and superinfection (delayed secondary infection) scenarios in the early stages (days) and in the late stages of the infection (years) are in agreement with emerging molecular biology findings. The immune response induces a competition among similar phenotypes, leading to differentiation (quasi-speciation), escape dynamics and complex oscillations of viral strain abundance. We found that the quasispecies dynamics after superinfection or coinfection has time scales of several months and becomes even slower when the immune system response is weak. Our model represents a general framework to study the speed and distribution of HIV quasispecies during disease progression, vaccination and therapy.Comment: 20 pages, 10 figure

    Interleukin 1-Beta (IL-1) Production by Innate Cells Following TLR Stimulation Correlates With TB Recurrence in ART-Treated HIV-Infected Patients

    No full text
    BACKGROUND: Tuberculosis (TB) remains a major cause of global morbidity and mortality, especially in the context of HIV co-infection, since immunity is not completely restored following antiretroviral therapy (ART). The identification of immune correlates of risk for TB disease could help in the design of host-directed therapies and clinical management. This study aimed to identify innate immune correlates of TB recurrence in HIV+ ART-treated individuals with a history of previous successful TB treatment. METHODS: Twelve participants with a recurrent episode of TB (cases) were matched for age, sex, time on ART, pre-ART CD4 count with 12 participants who did not develop recurrent TB in 60 months of follow-up (controls). Cryopreserved peripheral blood mononuclear cells from time points prior to TB recurrence were stimulated with ligands for Toll like receptors (TLR) including TLR-2, TLR-4, and TLR-7/8. Multi-color flow cytometry and intracellular cytokine staining was used to detect IL-1β, TNF-α, IL-12 and IP10 responses from monocytes and myeloid dendritic cells (mDCs). RESULTS: Elevated production of IL-1β from monocytes following TLR-2, TLR-4 and TLR-7/8 stimulation was associated with reduced odds of TB recurrence. In contrast, production of IL-1β from both monocytes and mDCs following Bacillus Calmette-Guérin (BCG) stimulation was associated with increased odds of TB recurrence (risk of recurrence increased by 30% in monocytes and 42% in mDCs respectively). CONCLUSION: Production of IL-1β by innate immune cells following TLR and BCG stimulations correlated with differential TB recurrence outcomes in ART-treated patients and highlights differences in host response to TB
    corecore