215 research outputs found
Domain Walls and Metastable Vacua in Hot Orientifold Field Theories
We consider "Orientifold field theories", namely SU(N) gauge theories with
Dirac fermions in the two-index representation at high temperature. When N is
even these theories exhibit a spontaneously broken Z2 centre symmetry. We study
aspects of the domain wall that interpolates between the two vacua of the
theory. In particular we calculate its tension to two-loop order. We compare
its tension to the corresponding domain wall in a SU(N) gauge theory with
adjoint fermions and find an agreement at large-N, as expected from planar
equivalence between the two theories. Moreover, we provide a non-perturbative
proof for the coincidence of the tensions at large-N. We also discuss the
vacuum structure of the theory when the fermion is given a large mass and argue
that there exist N-2 metastable vacua. We calculate the lifetime of those vacua
in the thin wall approximation.Comment: 29 pages, 4 figures. v2: minor changes in the introduction section.
to appear in JHE
Phase of the Wilson Line at High Temperature in the Standard Model
We compute the effective potential for the phase of the Wilson line at high
temperature in the standard model to one loop order. Besides the trivial vacua,
there are metastable states in the direction of hypercharge. Assuming
that the universe starts out in such a metastable state at the Planck scale, it
easily persists to the time of the electroweak phase transition, which then
proceeds by an unusual mechanism. All remnants of the metastable state
evaporate about the time of the phase transition.Comment: 4 pages in ReVTeX plus 1 figure; Columbia Univ. preprint CU-TP-63
Plaquette expectation value and lattice free energy of three-dimensional SU(N) gauge theory
We use high precision lattice simulations to calculate the plaquette
expectation value in three-dimensional SU(N) gauge theory for N=2,3,4,5,8.
Using these results, we study the N-dependence of the first non-perturbative
coefficient in the weak-coupling expansion of hot QCD. We demonstrate that, in
the limit of large N, the functional form of the plaquette expectation value
with ultraviolet divergences subtracted is 15.9(2)-44(2)/N^2.Comment: 14 pages, 6 figures. v2: references added; published versio
The chicken or the egg; or Who ordered the chiral phase transition?
We draw an analogy between the deconfining transition in the 2+1 dimensional
Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD.
Based on the detailed analysis of the former (hep-th/0010201) we suggest that
the chiral symmetry restoration in QCD at high temperature is driven by the
thermal ensemble of baryons and anti-baryons. The chiral symmetry is restored
when roughly half of the volume is occupied by the baryons. Surprisingly
enough, even though baryons are rather heavy, a crude estimate for the critical
temperature gives Mev. In this scenario the binding of the instantons
is not the cause but rather a consequence of the chiral symmetry restoration.Comment: 22 pages, 7 figures, comments about chiral symmetry at finite nuclear
density are adde
Perturbative analysis for Kaplan's lattice chiral fermions
Perturbation theory for lattice fermions with domain wall mass terms is
developed and is applied to investigate the chiral Schwinger model formulated
on the lattice by Kaplan's method. We calculate the effective action for gauge
fields to one loop, and find that it contains a longitudinal component even for
anomaly-free cases. From the effective action we obtain gauge anomalies and
Chern-Simons current without ambiguity. We also show that the current
corresponding to the fermion number has a non-zero divergence and it flows off
the wall into the extra dimension. Similar results are obtained for a proposal
by Shamir, who used a constant mass term with free boundaries instead of domain
walls.Comment: 25 page, 5 PostScript figures, [some changes in the conclusion
't Hooft Loops, Electric Flux Sectors and Confinement in SU(2) Yang-Mills Theory
We use 't Hooft loops of maximal size on finite lattices to calculate the
free energy in the sectors of SU(2) Yang-Mills theory with fixed electric flux
as a function of temperature and (spatial) volume. Our results provide evidence
for the mass gap. The confinement of electric fluxes in the low temperature
phase and their condensation in the high temperature phase are demonstrated. In
a surprisingly large scaling window around criticality, the transition is
quantitatively well described by universal exponents and amplitude ratios
relating the properties of the two phases.Comment: 5 Pages, LaTeX 2.09 (uses revtex v3.1), 5 Figures (epsfig), revised
version to appear in Phys. Rev.
Core Structure of Global Vortices in Brane World Models
We study analytically and numerically the core structure of global vortices
forming on topologically deformed brane-worlds with a single toroidally compact
extra dimension. It is shown that for an extra dimension size larger than the
scale of symmetry breaking the magnitude of the complex scalar field at the
vortex center can dynamically remain non-zero. Singlevaluedness and regularity
are not violated. Instead, the winding escapes to the extra dimension at the
vortex center. As the extra dimension size decreases the field magnitude at the
core dynamically decreases also and in the limit of zero extra dimension size
we reobtain the familiar global vortex solution. Extensions to other types of
defects and gauged symmetries are also discussed.Comment: 6 two column pages, 3 figure
Three-loop HTL QCD thermodynamics
The hard-thermal-loop perturbation theory (HTLpt) framework is used to
calculate the thermodynamic functions of a quark-gluon plasma to three-loop
order. This is the highest order accessible by finite temperature perturbation
theory applied to a non-Abelian gauge theory before the high-temperature
infrared catastrophe. All ultraviolet divergences are eliminated by
renormalization of the vacuum, the HTL mass parameters, and the strong coupling
constant. After choosing a prescription for the mass parameters, the three-loop
results for the pressure and trace anomaly are found to be in very good
agreement with recent lattice data down to , which are
temperatures accessible by current and forthcoming heavy-ion collision
experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE
A remark on non-Abelian classical kinetic theory
It is known that non-Abelian classical kinetic theory reproduces the Hard
Thermal/Dense Loop (HTL/HDL) effective action of QCD, obtained after
integrating out the hardest momentum scales from the system, as well as the
first higher dimensional operator beyond the HTL/HDL level. We discuss here its
applicability at still higher orders, by comparing the exact classical
effective action obtained in the static limit, with the 1-loop quantum
effective potential. We remark that while correct types of operators arise, the
classical colour algebra reproduces correctly the prefactor of the 4-point
function only for matter in asymptotically high dimensional colour
representations.Comment: 6 page
- …