233 research outputs found

    No Passport Needed: Border Crossings in the Academic Library

    Get PDF
    For most of their development as disciplines, the social sciences were fragmented, often contested subjects in academia. Their fields of concern – humanity, society, and human relationships with the environment – placed them in both the humanities and natural sciences camps of the academic world. Indeed, specializations in the broader field of the social sciences did not occur until the Twentieth century, causing a splinter of subject areas that refused to have anything to do with one another. However, this era of retrenchment has ended, and the traditional boundaries between the social sciences has once again become indistinct. But there is one concern that all social sciences share: the need for cohesive and manageable information. How do librarians accomplish such a feat when the metaphorical sand is constantly shifting beneath their feet? Emerging technologies such as Web 2.0, social networking software, social tagging, and wikis allow librarians and data gatherers to manage the growing body of knowledge and data while also reaching an ever-changing and increasingly technologically savvy clientele. By using these emerging technologies, libraries can create “one-stop shops” that allow scholars and students to acquire and deposit information related to the social sciences as well as communicate with each other to further global scholarship

    The multifactorial pathways towards resistance to the cytosine analogues emtricitabine and lamivudine: Evidences from literature

    Get PDF
    The article by Bulteel et al.,1 published in the September issue of the journal, has investigated the rate of M184V emergence in patients receiving HAART combinations containing efavirenz (EFV), tenofovir (TDF) and lamivudine (3 TC) or emtricitabine (FTC) within the UK Collaborative HIV Cohort. By analyzing 304 genotypic resistance tests, the authors asserted that, although patients receiving 3 TC-based regimens were more likely to develop M184V than those receiving FTC-based regimens (event rate: 0.55 [95%CI: 0.28–0.96] for 3 TC versus 0.34 [95%CI: 0.21–0.46] for FTC), this association was not statistically significant in both univariable and multivariable models. These results are different from those reported in previous studies from our and other groups2, 3 and 4 showing a significant decrease in M184V emergence in patients failing FTC + TDF-based compared to 3 TC + TDF-based HAART (Table 1). The lower prevalence of M184V in FTC-containing regimen was also supported by a recently published letter showing a strong trend (P = 0.051) towards higher rates of resistance to the 3 TC containing regimen 5.5 (1.8–12.8) per 1000 patient years when compared with the FTC containing regimens 1.7 (0.8–3.2) per 1000 patient year

    Mucosal Immunization with Iron Receptor Antigens Protects against Urinary Tract Infection

    Get PDF
    Uncomplicated infections of the urinary tract, caused by uropathogenic Escherichia coli, are among the most common diseases requiring medical intervention. A preventive vaccine to reduce the morbidity and fiscal burden these infections have upon the healthcare system would be beneficial. Here, we describe the results of a large-scale selection process that incorporates bioinformatic, genomic, transcriptomic, and proteomic screens to identify six vaccine candidates from the 5379 predicted proteins encoded by uropathogenic E. coli strain CFT073. The vaccine candidates, ChuA, Hma, Iha, IreA, IroN, and IutA, all belong to a functional class of molecules that is involved in iron acquisition, a process critical for pathogenesis in all microbes. Intranasal immunization of CBA/J mice with these outer membrane iron receptors elicited a systemic and mucosal immune response that included the production of antigen-specific IgM, IgG, and IgA antibodies. The cellular response to vaccination was characterized by the induction and secretion of IFN-γ and IL-17. Of the six potential vaccine candidates, IreA, Hma, and IutA provided significant protection from experimental infection. In immunized animals, class-switching from IgM to IgG and production of antigen-specific IgA in the urine represent immunological correlates of protection from E. coli bladder colonization. These findings are an important first step toward the development of a subunit vaccine to prevent urinary tract infections and demonstrate how targeting an entire class of molecules that are collectively required for pathogenesis may represent a fundamental strategy to combat infections

    Non-B HIV type 1 subtypes among men who have sex with men in Rome, Italy

    Get PDF
    An increase in the circulation of HIV-1 non-B subtypes has been observed in recent years in Western European countries. Due to the lack of data on the circulation of HIV-1 non-B subtypes among European HIV-1-infected men who have sex with men (MSM), a biomolecular study was conducted in Rome, Italy. HIV-1 partial pol gene sequences from 111 MSM individuals (76 drug naive and 35 drug experienced) were collected during the years 2004-2006. All these sequences were analyzed using the REGA HIV-1 Subtyping Tool, and aligned using CLUSTAL X followed by manual editing using the Bioedit software. A BLAST search for non-B subtype sequences was also performed. Twenty-six (23.4%) MSM were not Italians. Eight individuals (7.2%) were diagnosed as HIV infected before 1991, 20 (18.0%) between 1991 and 1999, and 83 (74.8%) from 2000 to 2006. Fifteen (15/111, 13.5%) individuals were infected with the non-B subtype. The percentage of infection with HIV-1 non-B subtypes was 8.2% (7/85) among Italian MSM and 30.8% (8/26) among the non-Italians (OR = 4.95 95% IC: 1.40-17.87). Individuals infected with the non-B subtype were significantly younger than those infected with the HIV-1 B subtype (28 years vs. 34 years, p = 0.003). The CRFs were more prevalent (8.1%) than pure subtypes (5.4%), which were distributed as follows: subtype C (2.6%), subtype A1 (1.7%), and subtype F1 (0.9%). Major mutations conferring resistance to antiretroviral drugs (ARV) were not found among HIV-1 non-B subtype drug-naive patients but were found in two ARV-experienced individuals. The data show that viral diversity is likely increasing in a population group that had been previously characterized by the circulation of HIV-1 subtype B. © Copyright 2009, Mary Ann Liebert, Inc

    Performance evaluation of a new on-demand molecular test for the rapid identification of severe acute respiratory syndrome coronavirus 2 in pediatric and adult patients

    Get PDF
    The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased the need to identify additional rapid diagnostic tests for an accurate and early diagnosis of infection. Here, we evaluated the diagnostic performance of the cartridge-based reverse transcription polymerase chain reaction (RT-PCR) test STANDARD M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, South Korea), targeting the ORF1ab and E gene of SARS-CoV-2, and which can process up to eight samples in parallel in 60 min. From January 2022 to March 2022, STANDARD (TM) M10 assay performance was compared with Xpert (R) Xpress SARS-CoV-2 (Cepheid, Sunnyvale CA) on 616 nasopharyngeal swabs from consecutive pediatric (N = 533) and adult (N = 83) patients presenting at the "Istituto di Ricovero e Cura a Carattere Scientifico" (IRCCS) Ospedate Pediatrico Bambino Gesu, Roma. The overall performance of STANDARD M10 SARS-CoV-2 was remarkably and consistently comparable to the Xpert (R) Xpress SARS-CoV-2 with an overall agreement of 98% (604/616 concordant results), and negligible differences in time-to-result (60 min vs. 50 min, respectively). When the Xpert (R) Xpress SARS-CoV-2 results were considered as the reference, STANDARD (TM) M10 SARS-CoV-2 had 96.5% sensitivity and 98.4% specificity. STANDARD M10 SARS-CoV2 can thus be safely included in diagnostic pathways because it rapidly and accurately identifies SARS-CoV-2 present in nasopharyngeal swabs

    Different evolution of genotypic resistance profiles to emtricitabine versus lamivudine in tenofovir-containing regimens.

    Get PDF
    BACKGROUND: To investigate genotypic resistance profiles to emtricitabine + tenofovir (FTC + TDF) in-vivo and in-vitro, and compare them with lamivudine + tenofovir (3TC + TDF). METHODS: Three hundred fifty-two HIV-1 B-subtype pol sequences from 42 FTC + TDF-treated patients, 40 3TC + TDF-treated patients, and 270 patients treated with 3TC plus another nucleoside reverse transcriptase inhibitor (but not TDF). All patients never received FTC, 3TC, and TDF in their previous therapeutic regimen. 3TC/FTC ± TDF resistance was investigated using in vitro selection experiments and docking simulations. RESULTS: The M184V mutation is less prevalent in FTC + TDF-treated patients than in 3TC + TDF-treated, and 3TC-treated/TDF-naive patients (14.3% versus 40.0%, P = 0.01 and 55.6%, P < 0.001). Multivariable analysis shows that factors correlated with a lower probability of M184V emergence at failure were the use of FTC compared with 3TC [odds ratio (OR): 0.32 (95% confidence interval (CI): 0.10 to 0.99), P = 0.04], the use of boosted protease inhibitor, and the use of TDF [OR: 0.20 (95% CI: 0.11 to 0.37), P < 0.001, and OR: 0.47 (95%CI: 0.22 to 1.01), P = 0.05, respectively]. In vitro selection experiments and docking analysis show that other reverse transcriptase (RT) mutations, even localized in RT connection domain, can be selected by 3TC + TDF or FTC + TDF in M184V absence and can affect RT affinity for 3TC/FTC and/or TDF. CONCLUSIONS: Our study shows lower rates of M184V development in FTC + TDF regimens versus 3TC + TDF and suggests a potential role of boosted protease inhibitors and TDF in delaying the M184V emergence. Novel RT mutational patterns, more complex than currently known, can contribute to 3TC, FTC, and TDF resistance

    Effects of amprenavir on HIV-1 maturation, production and infectivity following drug withdrawal in chronically-infected monocytes/macrophages

    Get PDF
    A paucity of information is available on the activity of protease inhibitors (PI) in chronically-infected monocyte-derived macrophages (MDM) and on the kinetics of viral-rebound after PI removal in vitro. To fill this gap, the activity of different concentrations of amprenavir (AMP) was evaluated in chronically-infected MDM by measuring p24-production every day up to 12 days after drug administration and up to seven days after drug removal. Clinically-relevant concentrations of AMP (4 and 20 \uce\ubcM) drastically decreased p24 amount released from chronically-infected MDM from Day 2 up to Day 12 after drug administration. The kinetics of viral-rebound after AMP-removal (4 and 20 \uce\ubcM) showed that, despite an initial increase, p24-production over time never reached the level observed for untreated-MDM, suggesting a persistent intracellular drug activity. In line with this, after AMP-removal, human immunodeficiency virus 1 (HIV-1) infectivity and intracellular the p24/p55 ratio (reflecting virion-maturation) were remarkably lower than observed for untreated MDM. Overall, AMP shows high efficacy in blocking HIV-1 replication in chronically-infected MDM, persisting even after drug-removal. This highlights the role of protease inhibitors in preventing the establishment of this important HIV-1 reservoir, thus reducing viral-dissemination in different anatomical compartments

    Temporal trend of drug-resistance and APOBEC editing in PBMC genotypic resistance tests from HIV-1 infected virologically suppressed individuals

    Get PDF
    Background: We aimed at evaluating the temporal trend of drug-resistance and APOBEC editing from HIV-DNA genotypic resistance tests (GRT) in virologically suppressed individuals.Material and methods: Major resistance mutations (MRM), genotypic susceptibility score (GSS) for the current regimen and APOBEC-related mutations (APO-M) were evaluated. Potential changes in trends of MRM and APO-M over-time were assessed and predictors of MRM detection or sub-optimal GSS (GSS&lt;2) at HIV-DNA-GRT were estimated through logistic regression analyses.Results: Among the 1126 individuals included, 396 (35.2%) harboured at least one MRM (23.4% to NRTI, 18.8% to NNRTI, 7.7% to PI and 1.4% to INSTI [N=724]); 132 (12.3%) individuals showed a GSS &lt;2. APO-M and stop codons were found in 229 (20.3%) and 105 (9.3%) individuals, respectively. APO-DRMs were found in 16.8% of individuals and were more likely observed in those individuals with stop codons (40.0%) compared to those without (14.4%, P&lt;0.001). From 2010 to 2021 no significant changes of resistance or APO-M were found. Positive predictors of MRM detection at HIV-DNA GRT were drug abuse, subtype B infection, and a prolonged and complex treatment history. Perinatal infection and having at least 2 stop codons were associated with a current suboptimal regimen.Conclusions: In virologically suppressed individuals, resistance in HIV-DNA and the extent of APOBEC editing were generally stable in the last decade. A careful evaluation of APOBEC editing might be helpful to improve the reliability of HIV-DNA GRT. Further investigations are required to understand how to apply the estimation of APOBEC editing in refining genotypic evaluation

    A proof-of-concept study on the genomic evolution of Sars-Cov-2 in molnupiravir-treated, paxlovid-treated and drug-naïve patients

    Get PDF
    Little is known about SARS-CoV-2 evolution under Molnupiravir and Paxlovid, the only antivirals approved for COVID-19 treatment. By investigating SARS-CoV-2 variability in 8 Molnupiravir-treated, 7 Paxlovid-treated and 5 drug-naïve individuals at 4 time-points (Days 0-2-5-7), a higher genetic distance is found under Molnupiravir pressure compared to Paxlovid and no-drug pressure (nucleotide-substitutions/site mean±Standard error: 18.7 × 10−4 ± 2.1 × 10−4 vs. 3.3 × 10−4 ± 0.8 × 10−4 vs. 3.1 × 10−4 ± 0.8 × 10−4, P = 0.0003), peaking between Day 2 and 5. Molnupiravir drives the emergence of more G-A and C-T transitions than other mutations (P = 0.031). SARS-CoV-2 selective evolution under Molnupiravir pressure does not differ from that under Paxlovid or no-drug pressure, except for orf8 (dN &gt; dS, P = 0.001); few amino acid mutations are enriched at specific sites. No RNA-dependent RNA polymerase (RdRp) or main proteases (Mpro) mutations conferring resistance to Molnupiravir or Paxlovid are found. This proof-of-concept study defines the SARS-CoV-2 within-host evolution during antiviral treatment, confirming higher in vivo variability induced by Molnupiravir compared to Paxlovid and drug-naive, albeit not resulting in apparent mutation selection
    corecore