356 research outputs found
TLR-2/TLR-4 TREM-1 Signaling Pathway Is Dispensable in Inflammatory Myeloid Cells during Sterile Kidney Injury
Inflammatory macrophages are abundant in kidney disease, stimulating repair, or driving chronic inflammation and fibrosis. Damage associated molecules (DAMPs), released from injured cells engage pattern recognition receptors (PRRs) on macrophages, contributing to activation. Understanding mechanisms of macrophage activation during kidney injury may lead to strategies to alleviate chronic disease. We identified Triggering-Receptor-in-Myeloid-cells (TREM)-1, a regulator of TLR signaling, as highly upregulated in kidney inflammatory macrophages and tested the roles of these receptors in macrophage activation and kidney disease. Kidney DAMPs activated macrophages in vitro, independently of TREM-1, but partially dependent on TLR-2/−4, MyD88. In two models of progressive interstitial kidney disease, TREM-1 blockade had no impact on disease or macrophage activation in vivo, but TLR-2/−4, or MyD88 deficiency was anti-inflammatory and anti-fibrotic. When MyD88 was mutated only in the myeloid lineage, however, there was no bearing on macrophage activation or disease progression. Instead, TLR-2/−4 or MyD88 deficiency reduced activation of mesenchyme lineage cells resulting in reduced inflammation and fibrosis, indicating that these pathways play dominant roles in activation of myofibroblasts but not macrophages. To conclude, TREM-1, TLR2/4 and MyD88 signaling pathways are redundant in myeloid cell activation in kidney injury, but the latter appear to regulate activation of mesenchymal cells
Mechanical ventilation modulates Toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: a controlled animal study
<p>Abstract</p> <p>Background</p> <p>Mechanical ventilation augments lung inflammation resulting from exposure to microbial products. The objective of this study was to test the hypothesis that ventilator-associated immune modulation requires MyD88-dependent signaling. Because MyD88 is a critical adapter protein utilized for pro-inflammatory signaling by all Toll-like receptors (TLRs), with the exception of TLR3, as well as by the IL-1 and IL-18 receptors, MyD88 dependence would implicate generation of an endogenous soluble ligand recognized by one or more of these receptors during mechanical ventilation and would provide an opportunity for a potential future therapeutic intervention.</p> <p>Methods</p> <p>We compared the effect of mechanical ventilation on lung inflammation and permeability between poly(I:C) exposed mice with or without expression of MyD88. Poly(I:C) is a synthetic ligand for TLR3, the only MyD88-independent TLR, allowing isolation of the effect of MyD88 deletion on ventilator-augmentation of lung inflammation. Lung inflammation was assessed by cytokine concentration in lung tissue homogenate and polymorphonuclear cell (PMN) number in bronchoalveolar lavage fluid (BALF). Lung permeability was assessed by total protein, IgM, and intravenously injected FITC-dextran concentrations in BALF.</p> <p>Results</p> <p>We found that MyD88 was required for mechanical ventilation augmentation of TLR3-induced lung inflammation and permeability. Because TLR4 is the most commonly reported receptor for endogenous ligands generated during tissue injury, we performed a second experiment comparing wildtype and TLR4-/- mice. We found that mechanical ventilation increased TLR3-mediated inflammation and permeability independent of TLR4.</p> <p>Conclusion</p> <p>These data support the hypothesis that mechanical ventilation with moderate tidal volumes generates an endogenous ligand(s) recognized by MyD88-dependent receptor(s) other than TLR4, and that this mechanism can contribute to the development of ventilator-associated lung inflammation and injury. Identification of these ligands and/or receptors could lead to new pharmacological treatments for ARDS.</p
Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction
INTRODUCTION: Multiple organ dysfunction syndrome (MODS) is a common complication of sepsis in mechanically ventilated patients with acute respiratory distress syndrome, but the links between mechanical ventilation and MODS are unclear. Our goal was to determine whether a minimally injurious mechanical ventilation strategy synergizes with low-dose endotoxemia to induce the activation of pro-inflammatory pathways in the lungs and in the systemic circulation, resulting in distal organ dysfunction and/or injury. METHODS: We administered intraperitoneal Escherichia coli lipopolysaccharide (LPS; 1 μg/g) to C57BL/6 mice, and 14 hours later subjected the mice to 6 hours of mechanical ventilation with tidal volumes of 10 ml/kg (LPS + MV). Comparison groups received ventilation but no LPS (MV), LPS but no ventilation (LPS), or neither LPS nor ventilation (phosphate-buffered saline; PBS). RESULTS: Myeloperoxidase activity and the concentrations of the chemokines macrophage inflammatory protein-2 (MIP-2) and KC were significantly increased in the lungs of mice in the LPS + MV group, in comparison with mice in the PBS group. Interestingly, permeability changes across the alveolar epithelium and histological changes suggestive of lung injury were minimal in mice in the LPS + MV group. However, despite the minimal lung injury, the combination of mechanical ventilation and LPS resulted in chemical and histological evidence of liver and kidney injury, and this was associated with increases in the plasma concentrations of KC, MIP-2, IL-6, and TNF-α. CONCLUSION: Non-injurious mechanical ventilation strategies interact with endotoxemia in mice to enhance pro-inflammatory mechanisms in the lungs and promote extra-pulmonary end-organ injury, even in the absence of demonstrable acute lung injury
QUANTITATIVE STUDIES OF THE IMMUNOGLOBULIN SEQUENCE IN THE RESPONSE OF THE RABBIT TO A SOMATIC ANTIGEN
Uso de iodóforo tópico em feridas crônicas: revisão da literatura
La investigación trata de una revisión de la literatura a cerca de la utilización del yodo tópico y/o compuestos en el tratamiento de las heridas crónicas. Se buscaran los ensayos clínicos en el Cochrane. Catorce (n=24) publicaciones estaban de acuerdo con los criterios de inclusión, y fueran analizadas según las características de las revistas y ensayos y clasificadas como: yodo versus otros agentes tópicos (7/ 50%); yodo versus curativos (6/ 42,9%) y yodo versus sin yodo (1/ 7,1%). Fueran obtenidos resultados favorables a la utilización del yodo y/o compuestos en 50% de los artículos analizados. Cuanto a las tendencias de los resultados, 6 de 8 publicaciones, a cerca de la de cicatrización de las heridas y prevención de infección, fueran favorables; 4 de 5 fueran no favorables solamente para la cicatrización, y el resultado del único trabajo con indicación del uso para tratamiento de infección de herida fue no favorable.Trata-se de revisão de literatura relacionada ao uso de iodóforos tópicos no tratamento de feridas crônicas. Os ensaios clínicos foram localizados por meio da Base de Dados Cochrane de Revisões Sistemáticas e Registro Cochrane Central de Ensayos Controlados. Quatorze (58,3%), dentre 24 artigos, atenderam os critérios de inclusão, analisados quanto às características dos periódicos e dos estudos e classificados em três grupos: iodóforo versus outros agentes tópicos (7 ou 50%); iodóforo versus coberturas (6 ou 42,9%) e iodóforo versus sem iodóforo (1 ou 7,1%). Resultados favoráveis à utilização dos iodóforos ocorreram em 50% dos artigos analisados. Quanto às tendências dos resultados, seis, dentre oito artigos, que tratavam de cicatrização de feridas e prevenção de infecção, foram favoráveis; quatro, dentre cinco, foram desfavoráveis somente para a cicatrização e no único ensaio em que houve indicação do seu uso para tratamento de infecção de ferida o resultado foi desfavorável.This study aimed to do a review of the literature regarding the use of topic iodine and/or compounds in the treatment of chronic wounds. The clinical trials were searched in the Cochrane database. Fourteen (58.3%) among 24 studies fulfilled the inclusion criteria. The articles were analyzed regarding journal and study characteristics and classified into three groups: Iodine versus other topic agents (7/ 50%); Iodine versus different dressings (6/ 42.9%); Iodine versus without Iodine (1/ 7.1%). Favorable results for the use of Iodine or similar product occurred in 50% of the analyzed studies. Six out of 8 trials showed favorable results for healing and infection prevention/ treatment; 4 out of 5 were not favorable when the healing objective was investigated and 1 study for infection treatment showed no favorable result
Controversy in the treatment of symptomatic internal rectal prolapse: suspension or resection?
Effects of Vagus Nerve Stimulation and Vagotomy on Systemic and Pulmonary Inflammation in a Two-Hit Model in Rats
Pulmonary inflammation contributes to ventilator-induced lung injury. Sepsis-induced pulmonary inflammation (first hit) may be potentiated by mechanical ventilation (MV, second hit). Electrical stimulation of the vagus nerve has been shown to attenuate inflammation in various animal models through the cholinergic anti-inflammatory pathway. We determined the effects of vagotomy (VGX) and vagus nerve stimulation (VNS) on systemic and pulmonary inflammation in a two-hit model. Male Sprague-Dawley rats were i.v. administered lipopolysaccharide (LPS) and subsequently underwent VGX, VNS or a sham operation. 1 hour following LPS, MV with low (8 mL/kg) or moderate (15 mL/kg) tidal volumes was initiated, or animals were left breathing spontaneously (SP). After 4 hours of MV or SP, rats were sacrificed. Cytokine and blood gas analysis was performed. MV with 15, but not 8 mL/kg, potentiated the LPS-induced pulmonary pro-inflammatory cytokine response (TNF-α, IL-6, KC: p<0.05 compared to LPS-SP), but did not affect systemic inflammation or impair oxygenation. VGX enhanced the LPS-induced pulmonary, but not systemic pro-inflammatory cytokine response in spontaneously breathing, but not in MV animals (TNF-α, IL-6, KC: p<0.05 compared to SHAM), and resulted in decreased pO2 (p<0.05 compared to sham-operated animals). VNS did not affect any of the studied parameters in both SP and MV animals. In conclusion, MV with moderate tidal volumes potentiates the pulmonary inflammatory response elicited by systemic LPS administration. No beneficial effects of vagus nerve stimulation performed following LPS administration were found. These results questions the clinical applicability of stimulation of the cholinergic anti-inflammatory pathway in systemically inflamed patients admitted to the ICU where MV is initiated
Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection
<p>Abstract</p> <p>Background</p> <p>Mucosal infections elicit inflammatory responses via regulated signaling pathways. Infection outcome depends strongly on early events occurring immediately when bacteria start interacting with cells in the mucosal membrane. Hitherto reported transcription profiles on host-pathogen interactions are strongly biased towards <it>in vitro </it>studies. To detail the local <it>in vivo </it>genetic response to infection, we here profiled host gene expression in a recent experimental model that assures high spatial and temporal control of uropathogenic <it>Escherichia coli </it>(UPEC) infection within the kidney of a live rat.</p> <p>Results</p> <p>Transcriptional profiling of tissue biopsies from UPEC-infected kidney tissue revealed 59 differentially expressed genes 8 h post-infection. Their relevance for the infection process was supported by a Gene Ontology (GO) analysis. Early differential expression at 3 h and 5 h post-infection was of low statistical significance, which correlated to the low degree of infection. Comparative transcriptomics analysis of the 8 h data set and online available studies of early local infection and inflammation defined a core of 80 genes constituting a "General tissue response to early local bacterial infections". Among these, 25% were annotated as interferon-γ (IFN-γ) regulated. Subsequent experimental analyses confirmed a systemic increase of IFN-γ in rats with an ongoing local kidney infection, correlating to splenic, rather than renal <it>Ifng </it>induction and suggested this inter-organ communication to be mediated by interleukin (IL)-23. The use of comparative transcriptomics allowed expansion of the statistical data handling, whereby relevant data could also be extracted from the 5 h data set. Out of the 31 differentially expressed core genes, some represented specific 5 h responses, illustrating the value of comparative transcriptomics when studying the dynamic nature of gene regulation in response to infections.</p> <p>Conclusion</p> <p>Our hypothesis-free approach identified components of infection-associated multi-cellular tissue responses and demonstrated how a comparative analysis allows retrieval of relevant information from lower-quality data sets. The data further define marked representation of IFN-γ responsive genes and a prompt inter-organ communication as a hallmark of an early local tissue response to infection.</p
- …
