19 research outputs found

    Intrinsically narrowband pair photon generation in microstructured fibres

    Get PDF
    In this paper we study the tailoring of photon spectral properties generated by four-wave mixing in a birefringent photonic crystal fibre (PCF). The aim is to produce intrinsically narrow-band photons and hence to achieve high non-classical interference visibility and generate high fidelity entanglement without any requirement for spectral filtering, leading to high effective detection efficiencies. We show unfiltered Hong-Ou-Mandel interference visibilities of 77% between photons from the same PCF, and 80% between separate sources. We compare results from modelling the PCF to these experiments and analyse photon purities.Comment: 23 pages, 17 figures, Comments Welcom

    Transition dipole moment orientation in films of solution processed fluorescent oligomers: Investigating the influence of molecular anisotropy

    Get PDF
    The low light-outcoupling efficiency of organic light emitting diodes (OLEDs) is limiting their performance. Orientation of the transition dipole moment of the emitting molecules in the plane of the diodes can improve the luminance of OLEDs. While the orientation of evaporated small-molecule materials has been studied in the past few years, not much is known about solution processed small molecules and short oligomers, and it is not clear yet which parameters influence their orientation in the film. In this work we study a series of short conjugated p-phenylene vinylene oligomers (OPVn), consisting of an increasing number of repeating phenyl rings (n from 2 to 7), which are introduced into a small-molecule host matrix. By measuring the angular distribution of p-polarised fluorescence intensity from thin solution processed films, we determine the average orientation of the transition dipole moment of the emitters in the host matrix. We find that for longer oligomers (n = 6, 7), the transition dipole moments align more horizontally, with ratios of horizontally to vertically oriented dipoles up to 80:20. The preferential horizontal alignment is related to the aggregation of the emitter molecules
    corecore