15 research outputs found

    Structure of cellulose microfibrils in primary cell-walls from collenchyma

    Get PDF
    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production

    Identifying multiple forms of lateral disorder in cellulose fibres

    No full text
    Many strong biological materials exist in the form of fibres that are partially crystalline but contain a substantial proportion of disordered domains, which contribute to the mechanical performance but result in broadening of the reflections in the diffraction patterns of such materials and make structure determination difficult. Where multiple forms of disorder are simultaneously present, many of the accepted ways of modelling the influence of disorder on a fibre diffraction pattern are inapplicable. Lateral disorder in cellulose fibrils of flax fibres was characterized by a multi-step approach. First, a scattering component derived from domains less uniformly oriented than the rest was isolated. A second scattering component giving rise to asymmetry in the radial profiles of the equatorial reflections was then quantified and subtracted. This component was associated with domains that could be related to the crystalline cellulose lattice, but with more variable and, on average, wider equatorial d spacings. A further partially oriented component with highly disordered lateral d spacings unrelated to any of the cellulose lattice dimensions was identified. This component may be derived from non-cellulosic polysaccharides. The remaining broadening was then separated into a contribution from disorder within the crystalline lattice, including known disorder in hydrogen bonding, and a Scherrer contribution from the microfibril diameter. The methods described are likely to find applications in the study of both natural and synthetic polymer fibres in which mechanical properties are influenced by disorder

    How cellulose stretches:Synergism between covalent and hydrogen bonding

    Get PDF
    Cellulose is the most familiar and most abundant strong biopolymer, but the reasons for its outstanding mechanical performance are not well understood. Each glucose unit in a cellulose chain is joined to the next by a covalent Cā€“Oā€“C linkage flanked by two hydrogen bonds. This geometry suggests some form of cooperativity between covalent and hydrogen bonding. Using infrared spectroscopy and X-ray diffraction, we show that mechanical tension straightens out the zigzag conformation of the cellulose chain, with each glucose unit pivoting around a fulcrum at either end. Straightening the chain leads to a small increase in its length and is resisted by one of the flanking hydrogen bonds. This constitutes a simple form of molecular leverage with the covalent structure providing the fulcrum and gives the hydrogen bond an unexpectedly amplified effect on the tensile stiffness of the chain. The principle of molecular leverage can be directly applied to certain other carbohydrate polymers, including the animal polysaccharide chitin. Related but more complex effects are possible in some proteins and nucleic acids. The stiffening of cellulose by this mechanism is, however, in complete contrast to the way in which hydrogen bonding provides toughness combined with extensibility in protein materials like spider silk

    UC/NZDFI's durable eucalypt research program

    No full text

    Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses

    Get PDF
    Background: Cellulose from grasses and cereals makes up much of the potential raw material for biofuel production. It is not clear if cellulose microfibrils from grasses and cereals differ in structure from those of other plants. The structures of the highly oriented cellulose microfibrils in the cell walls of the internodes of the bamboo Pseudosasa amabilis are reported. Strong orientation facilitated the use of a range of scattering techniques. Results: Small-angle neutron scattering provided evidence of extensive aggregation by hydrogen bonding through the hydrophilic edges of the sheets of chains. The microfibrils had a mean centre-to-centre distance of 3.0 nm in the dry state, expanding on hydration. The expansion on hydration suggests that this distance between centres was through the hydrophilic faces of adjacent microfibrils. However in the other direction, perpendicular to the sheets of chains, the mean, disorder-corrected Scherrer dimension from wide-angle X-ray scattering was 3.8 nm. It is possible that this dimension is increased by twinning (crystallographic coalescence) of thinner microfibrils over part of their length, through the hydrophobic faces. The wide-angle scattering data also showed that the microfibrils had a relatively large intersheet d-spacing and small monoclinic angle, features normally considered characteristic of primary-wall cellulose. Conclusions: Bamboo microfibrils have features found in both primary-wall and secondary-wall cellulose, but are crystallographically coalescent to a greater extent than is common in celluloses from other plants. The extensive aggregation and local coalescence of the microfibrils are likely to have parallels in other grass and cereal species and to influence the accessibility of cellulose to degradative enzymes during conversion to liquid biofuel

    Screening eucalypts for growth-strain

    No full text
    Eucalypt species are fast-growing and can produce high quality timber for appearance and structural products including Laminated Veneer Lumber (LVL). Eucalypts can contain large growth-strains which are associated with log splitting, warp, collapse and brittleheart. These impose substantial costs on processing (Yamamoto 2007). Costly, and only partially effective, mitigation strategies have been developed to reduce wood defects induced by growth-strain. As growth-strain is highly heritable, an alternative approach is to select and grow individuals which display low growth-strain. Until now measurement of growth-strain has been difficult, time consuming and expensive, preventing the assessment of the large number of trees needed by a breeding programme (Altaner 2015). As an example, the largest sample number in any reported growth-strain study was smaller than 230 trees (Solorzano Naranjo 2011). Traditionally selections are made when trees are older, not only increasing costs (e.g. trial management, sample handling) but also substantially extending the breeding cycle and delaying the deployment of improved germplasm (Altaner 2015). Developments at the University of Canterbury have resulted in a unique growth-strain measurement method supported by theoretical analysis (Entwistle 2014) - dubbed the ā€œSplittingā€ test. It allows for rapid growth-strain assessment on young trees (Chauhan 2010)

    Distribution of (1ā†’4)-Ī²-galactans, arabinogalactan proteins, xylans and (1ā†’3)-Ī²-glucans in tracheid cell walls of softwoods

    No full text
    Polysaccharides were located in the walls of normal and compression wood tracheids of Pinus radiata (radiata pine), Picea sitchensis (Sitka spruce) and Picea abies (Norway spruce) by transmission electron microscopy using immunogold labelling with monoclonal antibodies to (1ā†’4)-Ī²-galactan (LM5), (1ā†’3)-Ī²-glucan, arabinogalactan proteins (AGPs) (MAC207) and heteroxylans (LM10 and LM11). In fully differentiated compression wood tracheids, (1ā†’4)-Ī²-galactan was found in the S2(L) layer and, to a smaller extent, at the interface between the compound middle lamella and the S1 layer. (1ā†’4)-Ī²-Galactan appeared to be displaced from, or modified in, the S1 layer during cell wall formation. (1ā†’3)-Ī²-Glucan (callose) was confined to the helical cavities in the inner S2 layer of severe compression wood. MAC207 AGP glycan epitope was found exclusively in the S1 and S3 layers of normal wood tracheids and in the S1 and inner S2 layers of compression wood tracheids. Binding of LM10, which specifically recognizes unsubstituted or low-substituted xylans, occurred at similar locations to the MAC207 epitope, whereas binding of LM11, which recognizes more highly substituted as well as unsubstituted xylans, occurred throughout the tracheid walls with the exception of the primary wall. Immunogold labelling showed that the different wall layers of softwood tracheids have different polysaccharide compositions which change abruptly during cell wall formation

    Molecular xylem cell wall structure of an inclined Cycas micronesica stem, a tropical gymnosperm

    No full text
    The molecular structure of tracheid walls of an inclined eccentrically grown stem of Cycas micronesica K.D. Hill did not differ between the upper and lower side. The absence of the typical molecular features of compression wood tracheids, i.e. an increased galactose and lignin content as well as an increased microfibril angle, indicated that cycads do not have the ability to form even very mild forms of compression wood, which lacks anatomical features commonly observed in compression wood. Analysis of the sugar monomers in Cycas micronesica tracheids did reveal a rather unique composition of the non-cellulosic polysaccharides for a gymnosperm. The low mannose and high xylose content resembled a cell wall matrix common in angiosperms. The crystalline cellulose structure in Cycas micronesica tracheids closely resembled those of secondary cell walls in Picea sitchensis (Bong.) Carr. tracheids. However, the spacing between the sheets of cellulose chains was wider and the cellulose fibrils appeared to form larger aggregates than in Sitka spruce tracheids

    Wood shrinkage: influence of anatomy, cell wall architecture, chemical composition and cambial age

    Get PDF
    The influence of microfibril angle (MfA), density and chemical cell wall composition on shrinkage varied between the longitudinal and tangential directions as well as between wood types, namely compression wood (CW), mature wood (MW) and juvenile wood (JW). At the same MfA, CW exhibited a lower tangential shrinkage than JW, indicating the influence of the chemical composition on wood shrinkage. The chemical composition measured via FTIR micro-spectroscopy has been shown in conjunction with density to be an alternative to MfA data for shrinkage predictions. This was particularly true for wood of young cambial age for which the MfA did not correlate to shrinkage. The results indicate a possibility to reduce distortion of sawn timber by segregation using infrared (IR) and X-ray in-line measurements

    Wood quality assessment of Pinus radiata (radiata pine) saplings by dynamic mechanical analysis

    Get PDF
    The use of dynamic mechanical analysis was explored as a possible method of screening for wood quality in breeding programmes. Viscoelastic properties along the grain of wood from 18-month-old Pinus radiata saplings were measured using a humidity-controlled dynamic mechanical analyser. Storage modulus and tanĪ“ were determined independently for opposite wood (OW) and compression wood (CW) in 25 trees in the temperature range from 10 to 45 Ā°C at 5 Ā°C intervals at three frequencies (0.1, 1 and 10 Hz) at constant moisture content of 9 %. Storage modulus and tanĪ“ were frequency and temperature dependent. The two wood types did not differ significantly in their storage modulus. But OW exhibited significantly higher tanĪ“ values than CW. The relationship of viscoelastic properties with physical (acoustic velocity, basic density and longitudinal shrinkage) and chemical wood properties was explored. There was a strong correlation (R = 0.76) between storage modulus and dynamic MOE (measured by acoustics). In addition, tanĪ“ was positively correlated with longitudinal shrinkage. Monosaccharide compositions of the cell wall polysaccharides and lignin contents were determined and showed significant differences in the relative proportion of major cell wall components in OW and CW. Correlations between tanĪ“ and xylose, originating from heteroxylans, and lignin content were found for CW, suggesting that the damping behaviour of cell walls is controlled by the matrix between cellulose fibril aggregates
    corecore