1,679 research outputs found
Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling
A distance labeling scheme is an assignment of bit-labels to the vertices of
an undirected, unweighted graph such that the distance between any pair of
vertices can be decoded solely from their labels. An important class of
distance labeling schemes is that of hub labelings, where a node
stores its distance to the so-called hubs , chosen so that for
any there is belonging to some shortest
path. Notice that for most existing graph classes, the best distance labelling
constructions existing use at some point a hub labeling scheme at least as a
key building block. Our interest lies in hub labelings of sparse graphs, i.e.,
those with , for which we show a lowerbound of
for the average size of the hubsets.
Additionally, we show a hub-labeling construction for sparse graphs of average
size for some , where is the
so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced
matchings in dense graphs. This implies that further improving the lower bound
on hub labeling size to would require a
breakthrough in the study of lower bounds on , which have resisted
substantial improvement in the last 70 years. For general distance labeling of
sparse graphs, we show a lowerbound of , where is the communication complexity of the
Sum-Index problem over . Our results suggest that the best achievable
hub-label size and distance-label size in sparse graphs may be
for some
The Tree Inclusion Problem: In Linear Space and Faster
Given two rooted, ordered, and labeled trees and the tree inclusion
problem is to determine if can be obtained from by deleting nodes in
. This problem has recently been recognized as an important query primitive
in XML databases. Kilpel\"ainen and Mannila [\emph{SIAM J. Comput. 1995}]
presented the first polynomial time algorithm using quadratic time and space.
Since then several improved results have been obtained for special cases when
and have a small number of leaves or small depth. However, in the worst
case these algorithms still use quadratic time and space. Let , , and
denote the number of nodes, the number of leaves, and the %maximum depth
of a tree . In this paper we show that the tree inclusion
problem can be solved in space and time: O(\min(l_Pn_T, l_Pl_T\log
\log n_T + n_T, \frac{n_Pn_T}{\log n_T} + n_{T}\log n_{T})). This improves or
matches the best known time complexities while using only linear space instead
of quadratic. This is particularly important in practical applications, such as
XML databases, where the space is likely to be a bottleneck.Comment: Minor updates from last tim
Smart City Analytics: Ensemble-Learned Prediction of Citizen Home Care
We present an ensemble learning method that predicts large increases in the
hours of home care received by citizens. The method is supervised, and uses
different ensembles of either linear (logistic regression) or non-linear
(random forests) classifiers. Experiments with data available from 2013 to 2017
for every citizen in Copenhagen receiving home care (27,775 citizens) show that
prediction can achieve state of the art performance as reported in similar
health related domains (AUC=0.715). We further find that competitive results
can be obtained by using limited information for training, which is very useful
when full records are not accessible or available. Smart city analytics does
not necessarily require full city records.
To our knowledge this preliminary study is the first to predict large
increases in home care for smart city analytics
Sequence Modelling For Analysing Student Interaction with Educational Systems
The analysis of log data generated by online educational systems is an
important task for improving the systems, and furthering our knowledge of how
students learn. This paper uses previously unseen log data from Edulab, the
largest provider of digital learning for mathematics in Denmark, to analyse the
sessions of its users, where 1.08 million student sessions are extracted from a
subset of their data. We propose to model students as a distribution of
different underlying student behaviours, where the sequence of actions from
each session belongs to an underlying student behaviour. We model student
behaviour as Markov chains, such that a student is modelled as a distribution
of Markov chains, which are estimated using a modified k-means clustering
algorithm. The resulting Markov chains are readily interpretable, and in a
qualitative analysis around 125,000 student sessions are identified as
exhibiting unproductive student behaviour. Based on our results this student
representation is promising, especially for educational systems offering many
different learning usages, and offers an alternative to common approaches like
modelling student behaviour as a single Markov chain often done in the
literature.Comment: The 10th International Conference on Educational Data Mining 201
Sublinear Distance Labeling
A distance labeling scheme labels the nodes of a graph with binary
strings such that, given the labels of any two nodes, one can determine the
distance in the graph between the two nodes by looking only at the labels. A
-preserving distance labeling scheme only returns precise distances between
pairs of nodes that are at distance at least from each other. In this paper
we consider distance labeling schemes for the classical case of unweighted
graphs with both directed and undirected edges.
We present a bit -preserving distance labeling
scheme, improving the previous bound by Bollob\'as et. al. [SIAM J. Discrete
Math. 2005]. We also give an almost matching lower bound of
. With our -preserving distance labeling scheme as a
building block, we additionally achieve the following results:
1. We present the first distance labeling scheme of size for sparse
graphs (and hence bounded degree graphs). This addresses an open problem by
Gavoille et. al. [J. Algo. 2004], hereby separating the complexity from
distance labeling in general graphs which require bits, Moon [Proc.
of Glasgow Math. Association 1965].
2. For approximate -additive labeling schemes, that return distances
within an additive error of we show a scheme of size for .
This improves on the current best bound of by
Alstrup et. al. [SODA 2016] for sub-polynomial , and is a generalization of
a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for
.Comment: A preliminary version of this paper appeared at ESA'1
Neural Speed Reading with Structural-Jump-LSTM
Recurrent neural networks (RNNs) can model natural language by sequentially
'reading' input tokens and outputting a distributed representation of each
token. Due to the sequential nature of RNNs, inference time is linearly
dependent on the input length, and all inputs are read regardless of their
importance. Efforts to speed up this inference, known as 'neural speed
reading', either ignore or skim over part of the input. We present
Structural-Jump-LSTM: the first neural speed reading model to both skip and
jump text during inference. The model consists of a standard LSTM and two
agents: one capable of skipping single words when reading, and one capable of
exploiting punctuation structure (sub-sentence separators (,:), sentence end
symbols (.!?), or end of text markers) to jump ahead after reading a word. A
comprehensive experimental evaluation of our model against all five
state-of-the-art neural reading models shows that Structural-Jump-LSTM achieves
the best overall floating point operations (FLOP) reduction (hence is faster),
while keeping the same accuracy or even improving it compared to a vanilla LSTM
that reads the whole text.Comment: 10 page
Near-Optimal Induced Universal Graphs for Bounded Degree Graphs
A graph is an induced universal graph for a family of graphs if every
graph in is a vertex-induced subgraph of . For the family of all
undirected graphs on vertices Alstrup, Kaplan, Thorup, and Zwick [STOC
2015] give an induced universal graph with vertices,
matching a lower bound by Moon [Proc. Glasgow Math. Assoc. 1965].
Let . Improving asymptotically on previous results by
Butler [Graphs and Combinatorics 2009] and Esperet, Arnaud and Ochem [IPL
2008], we give an induced universal graph with vertices for the family of graphs with vertices of maximum degree
. For constant , Butler gives a lower bound of
. For an odd constant , Esperet et al.
and Alon and Capalbo [SODA 2008] give a graph with
vertices. Using their techniques for any
(including constant) even values of gives asymptotically worse bounds than
we present.
For large , i.e. when , the previous best
upper bound was due to Adjiashvili and
Rotbart [ICALP 2014]. We give upper and lower bounds showing that the size is
. Hence the optimal size is
and our construction is within a factor of
from this. The previous results were
larger by at least a factor of .
As a part of the above, proving a conjecture by Esperet et al., we construct
an induced universal graph with vertices for the family of graphs with
max degree . In addition, we give results for acyclic graphs with max degree
and cycle graphs. Our results imply the first labeling schemes that for any
are at most bits from optimal
Constructing Light Spanners Deterministically in Near-Linear Time
Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [Shiri Chechik and Christian Wulff-Nilsen, 2018] improved the state-of-the-art for light spanners by constructing a (2k-1)(1+epsilon)-spanner with O(n^(1+1/k)) edges and O_epsilon(n^(1/k)) lightness. Soon after, Filtser and Solomon [Arnold Filtser and Shay Solomon, 2016] showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the greedy spanner is its running time of O(mn^(1+1/k)) (which is faster than [Shiri Chechik and Christian Wulff-Nilsen, 2018]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness Omega_epsilon(kn^(1/k)), even when randomization is used.
The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an O_epsilon(n^(2+1/k+epsilon\u27)) time spanner construction which achieves the state-of-the-art bounds. Our second result is an O_epsilon(m + n log n) time construction of a spanner with (2k-1)(1+epsilon) stretch, O(log k * n^(1+1/k) edges and O_epsilon(log k * n^(1/k)) lightness. This is an exponential improvement in the dependence on k compared to the previous result with such running time. Finally, for the important special case where k=log n, for every constant epsilon>0, we provide an O(m+n^(1+epsilon)) time construction that produces an O(log n)-spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any k = omega(1).
To achieve our constructions, we show a novel deterministic incremental approximate distance oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our new oracle is of independent interest
2-Vertex Connectivity in Directed Graphs
We complement our study of 2-connectivity in directed graphs, by considering
the computation of the following 2-vertex-connectivity relations: We say that
two vertices v and w are 2-vertex-connected if there are two internally
vertex-disjoint paths from v to w and two internally vertex-disjoint paths from
w to v. We also say that v and w are vertex-resilient if the removal of any
vertex different from v and w leaves v and w in the same strongly connected
component. We show how to compute the above relations in linear time so that we
can report in constant time if two vertices are 2-vertex-connected or if they
are vertex-resilient. We also show how to compute in linear time a sparse
certificate for these relations, i.e., a subgraph of the input graph that has
O(n) edges and maintains the same 2-vertex-connectivity and vertex-resilience
relations as the input graph, where n is the number of vertices.Comment: arXiv admin note: substantial text overlap with arXiv:1407.304
Simpler, faster and shorter labels for distances in graphs
We consider how to assign labels to any undirected graph with n nodes such
that, given the labels of two nodes and no other information regarding the
graph, it is possible to determine the distance between the two nodes. The
challenge in such a distance labeling scheme is primarily to minimize the
maximum label lenght and secondarily to minimize the time needed to answer
distance queries (decoding). Previous schemes have offered different trade-offs
between label lengths and query time. This paper presents a simple algorithm
with shorter labels and shorter query time than any previous solution, thereby
improving the state-of-the-art with respect to both label length and query time
in one single algorithm. Our solution addresses several open problems
concerning label length and decoding time and is the first improvement of label
length for more than three decades.
More specifically, we present a distance labeling scheme with label size (log
3)/2 + o(n) (logarithms are in base 2) and O(1) decoding time. This outperforms
all existing results with respect to both size and decoding time, including
Winkler's (Combinatorica 1983) decade-old result, which uses labels of size
(log 3)n and O(n/log n) decoding time, and Gavoille et al. (SODA'01), which
uses labels of size 11n + o(n) and O(loglog n) decoding time. In addition, our
algorithm is simpler than the previous ones. In the case of integral edge
weights of size at most W, we present almost matching upper and lower bounds
for label sizes. For r-additive approximation schemes, where distances can be
off by an additive constant r, we give both upper and lower bounds. In
particular, we present an upper bound for 1-additive approximation schemes
which, in the unweighted case, has the same size (ignoring second order terms)
as an adjacency scheme: n/2. We also give results for bipartite graphs and for
exact and 1-additive distance oracles
- …
