148 research outputs found

    Forced Solid-State Interactions for the Selective “Turn-On” Fluorescence Sensing of Aluminum Ions in Water Using a Sensory Polymer Substrate

    Get PDF
    Selective and sensitive solid sensory substrates for detecting Al(III) in pure water are reported. The material is a flexible polymer film that can be handled and exhibits gel behavior and membrane performance. The film features a chemically anchored salicylaldehyde benzoylhydrazone derivative as an aluminum ion fluorescence sensor. A novel procedure for measuring Al(III) at the ppb level using a single solution drop in 20 min was developed. In this procedure, a drop was allowed to enter the hydrophilic material for 15 min before a 5 min drying period. The process forced the Al(III) to interact with the sensory motifs within the membrane before measuring the fluorescence of the system. The limit of detection of Al(III) was 22 ppm. Furthermore, a water-soluble sensory polymer containing the same sensory motifs was developed with a limit of detection of Al(III) of 1.5 ppb, which was significantly lower than the Environmental Protection Agency recommendations for drinking water.Spanish Ministerio de Economía y Competitividad-Feder (MAT2011-22544) and by the Consejería de Educación - Junta de Castilla y León (BU232U13)

    Electrical Resistivity of Lanthanum, Praseodymium, Neodymium, and Samarium

    Full text link
    The electrical resistivities of polycrystalline samples of La, Pr, Nd, and Sm are reported in the temperature range 1.3 to 300 deg K. La exhibits a superconducting transition at 5.8 deg K. The curve for Pr has slope changes at 61 and 95 deg K. The Nd curve shows small jumps at 5 and 20 deg K. Sm shows slope changes at 14 and 106 deg K. (auth
    • 

    corecore