38 research outputs found

    Cue-Reactors: Individual Differences in Cue-Induced Craving after Food or Smoking Abstinence

    Get PDF
    Background: Pavlovian conditioning plays a critical role in both drug addiction and binge eating. Recent animal research suggests that certain individuals are highly sensitive to conditioned cues, whether they signal food or drugs. Are certain humans also more reactive to both food and drug cues? Methods: We examined cue-induced craving for both cigarettes and food, in the same individuals (n = 15 adult smokers). Subjects viewed smoking-related or food-related images after abstaining from either smoking or eating. Results: Certain individuals reported strong cue-induced craving after both smoking and food cues. That is, subjects who reported strong cue-induced craving for cigarettes also rated stronger cue-induced food craving. Conclusions: In humans, like in nonhumans, there may be a ‘‘cue-reactive’ ’ phenotype, consisting of individuals who are highly sensitive to conditioned stimuli. This finding extends recent reports from nonhuman studies. Further understanding this subgroup of smokers may allow clinicians to individually tailor therapies for smoking cessation

    More on ADORA

    No full text

    Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults

    No full text
    The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38–alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands

    A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans

    No full text
    Slow, rhythmic oscillations (<5 Hz) in the sleep electroencephalogram may be a sign of synaptic plasticity occurring during sleep. The oscillations, referred to as slow-wave activity (SWA), reflect sleep need and sleep intensity. The amount of SWA is homeostatically regulated. It is enhanced after sleep loss and declines during sleep. Animal studies suggested that sleep need is genetically controlled, yet the physiological mechanisms remain unknown. Here we show in humans that a genetic variant of adenosine deaminase, which is associated with the reduced metabolism of adenosine to inosine, specifically enhances deep sleep and SWA during sleep. In contrast, a distinct polymorphism of the adenosine A(2A) receptor gene, which was associated with interindividual differences in anxiety symptoms after caffeine intake in healthy volunteers, affects the electroencephalogram during sleep and wakefulness in a non-state-specific manner. Our findings indicate a direct role of adenosine in human sleep homeostasis. Moreover, our data suggest that genetic variability in the adenosinergic system contributes to the interindividual variability in brain electrical activity during sleep and wakefulness

    Adenosine, Caffeine, and Performance: From Cognitive Neuroscience of Sleep to Sleep Pharmacogenetics

    Full text link
    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention attention in rested and sleep-deprived states. Caffeine Caffeine -the most often consumed stimulant in the world-blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction

    Association of the Anxiogenic and Alerting Effects of Caffeine with ADORA2A and ADORA1 Polymorphisms and Habitual Level of Caffeine Consumption

    No full text
    Caffeine, a widely consumed adenosine A1 and A2A receptor antagonist, is valued as a psychostimulant, but it is also anxiogenic. An association between a variant within the ADORA2A gene (rs5751876) and caffeine-induced anxiety has been reported for individuals who habitually consume little caffeine. This study investigated whether this single nucleotide polymorphism (SNP) might also affect habitual caffeine intake, and whether habitual intake might moderate the anxiogenic effect of caffeine. Participants were 162 non-/low (NL) and 217 medium/high (MH) caffeine consumers. In a randomized, double-blind, parallel groups design they rated anxiety, alertness, and headache before and after 100 mg caffeine and again after another 150 mg caffeine given 90 min later, or after placebo on both occasions. Caffeine intake was prohibited for 16 h before the first dose of caffeine/placebo. Results showed greater susceptibility to caffeine-induced anxiety, but not lower habitual caffeine intake (indeed coffee intake was higher), in the rs5751876 TT genotype group, and a reduced anxiety response in MH vs NL participants irrespective of genotype. Apart from the almost completely linked ADORA2A SNP rs3761422, no other of eight ADORA2A and seven ADORA1 SNPs studied were found to be clearly associated with effects of caffeine on anxiety, alertness, or headache. Placebo administration in MH participants decreased alertness and increased headache. Caffeine did not increase alertness in NL participants. With frequent consumption, substantial tolerance develops to the anxiogenic effect of caffeine, even in genetically susceptible individuals, but no net benefit for alertness is gained, as caffeine abstinence reduces alertness and consumption merely returns it to baseline
    corecore