3 research outputs found

    Transcriptome Analysis of CHO Cell Size Increase During a Fed-Batch Process

    Get PDF
    In a Chinese Hamster Ovary (CHO) cell fed-batch process, arrest of cell proliferation and an almost threefold increase in cell size occurred, which is associated with an increase in cell-specific productivity. In this study, transcriptome analysis is performed to identify the molecular mechanisms associated with this. Cell cycle analysis reveals that the cells are arrested mainly in the G0/G1 phase. The cell cycle arrest is associated with significant up-regulation of cyclin-dependent kinases inhibitors (CDKNs) and down-regulation of cyclin-dependent kinases (CDKs) and cyclins. During the cell size increase phase, the gene expression of the upstream pathways of mechanistic target of rapamycin (mTOR), which is related to the extracellular growth factor, cytokine, and amino acid conditions, shows a strongly synchronized pattern to promote the mTOR activity. The downstream genes of mTOR also show a synchronized pattern to stimulate protein translation and lipid synthesis. The results demonstrate that cell cycle inhibition and stimulated mTOR activity at the transcriptome level are related to CHO cell size increase. The cell size increase is related to the extracellular nutrient conditions through a number of cascade pathways, indicating that by rational design of media and feeds, CHO cell size can be manipulated during culture processes, which may further improve cell growth and specific productivity

    Transcriptome analysis for the scale-down of a CHO cell fed-batch process

    No full text
    Transcriptome and metabolism analysis were performed to evaluate the scale-down of a CHO cell fed-batch process from a 10 L bioreactor to an ambr 15® (ambr) system. Two different agitation scale-down principles were applied, resulting in two different agitation rates in the ambr system: 1300 RPM based on the agitator tip speed, and 800 rpm based on the volumetric power input (P/V). Culture performance including cell growth, product titer, glycosylation, and specific consumption/production rates of metabolites was the same for both agitation rates in the ambr and was comparable to that of the 10 L system. The initial variation in gene expression between the inocula for the ambr and 10 L system was no longer present after three days of culture, indicating comparable culture conditions in both systems. Based on principal component analysis, changes in gene expression over time were similar between both scales with less than 6% variation. 2455 genes were uniquely regulated in the ambr system compared to 1604 genes in the 10 L system. Functional analysis of these genes did not reveal their relations with scale or cellular function. This study further strengthens that the ambr system gives representative culture performance for the 10 L bench-scale bioreactor.</p
    corecore