11 research outputs found

    CRB2 Mutations Produce a Phenotype Resembling Congenital Nephrosis, Finnish Type, with Cerebral Ventriculomegaly and Raised Alpha-Fetoprotein

    Get PDF
    We report five fetuses and a child from three families who shared a phenotype comprising cerebral ventriculomegaly and echogenic kidneys with histopathological findings of congenital nephrosis. The presenting features were greatly elevated maternal serum alpha-fetoprotein (MSAFP) or amniotic fluid alpha-fetoprotein (AFAFP) levels or abnormalities visualized on ultrasound scan during the second trimester of pregnancy. Exome sequencing revealed deleterious sequence variants in Crumbs, Drosophila, Homolog of, 2 (CRB2) consistent with autosomal-recessive inheritance. Two fetuses with cerebral ventriculomegaly and renal microcysts were compound heterozygotes for p.Asn800Lys and p.Trp759Ter, one fetus with renal microcysts was a compound heterozygote for p.Glu643Ala and p.Asn800Lys, and one child with cerebral ventriculomegaly, periventricular heterotopias, echogenic kidneys, and renal failure was homozygous for p.Arg633Trp in CRB2. Examination of the kidneys in one fetus showed tubular cysts at the corticomedullary junction and diffuse effacement of the epithelial foot processes and microvillous transformation of the renal podocytes, findings that were similar to those reported in congenital nephrotic syndrome, Finnish type, that is caused by mutations in nephrin (NPHS1). Loss of function for crb2b and nphs1 in Danio rerio were previously shown to result in loss of the slit diaphragms of the podocytes, leading to the hypothesis that nephrosis develops from an inability to develop a functional glomerular barrier. We conclude that the phenotype associated with CRB2 mutations is pleiotropic and that the condition is an important consideration in the evaluation of high MSAFP/AFAFP where a renal cause is suspected

    Renal Genetics Clinic: 3-Year Experience in the Cleveland ClinicPlain-Language Summary

    No full text
    Rationale & Objective: There has been an increasing demand for the expertise provided by a renal genetics clinic. Such programs are limited in the United States and typically operate in a genomics research setting. Here we report a 3-year, real-world, single-center renal genetics clinic experience. Study Design: Retrospective cohort. Setting & Participants: Outpatient cases referred to the renal genetics clinic of the Cleveland Clinic between January 2019 and March 2022 were reviewed. Analytical Approach: Clinical and laboratory characteristics were analyzed. All genetic testing was performed in clinical labs. Results: 309 new patients referred from 15 specialties were evaluated, including 118 males and 191 females aged 35.1 ± 20.3 years. Glomerular diseases were the leading presentation followed by cystic kidney diseases, electrolyte disorders, congenital anomalies of kidneys and urinary tract, nephrolithiasis, and tubulointerstitial kidney diseases. Dysmorphic features were noted in 27 (8.7%) patients. Genetic testing was recommended in 292 (94.5%) patients including chromosomal microarray (8.9%), single-gene tests (19.5%), multigene panels (77.3%), and exome sequencing (17.5%). 80.5% of patients received insurance coverage for genetic testing. 45% (115/256) of patients had positive results, 25% (64/256) had variants of unknown significance, and 22.3% (57/256) had negative results. 43 distinct monogenic disorders were diagnosed. Family history of kidney disease was present in 52.8% of patients and associated with positive genetic findings (OR, 2.28; 95% CI, 1.40-3.74). 69% of patients with positive results received a new diagnosis and/or a change in the diagnosis. Among these, 39.7% (31/78) of patients received a significant change in disease management. Limitations: Retrospective and single-center study. Conclusions: The renal genetics clinic plays important roles in the diagnosis and management of patients with genetic kidney diseases. Multigene panels are the most frequently used testing modality with a high diagnostic yield. Family history of kidney disease is a strong indication for renal genetics clinic referral

    ATP6V0C variants impair vacuolar V-ATPase causing a neurodevelopmental disorder often associated with epilepsy

    No full text
    The vacuolar H+-ATPase (V-ATPase) is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the V-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modeling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased V-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behavior, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction, and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder, and provides insight into disease mechanisms
    corecore