251 research outputs found

    Hyperglycemia and Hyperlipidemia Act Synergistically to Induce Renal Disease in LDL Receptor-Deficient BALB Mice

    Get PDF
    Diabetic nephropathy is the leading cause of end-stage renal disease in Western countries, but only a portion of diabetic patients develop diabetic nephropathy. Dyslipidemia represents an important aspect of the metabolic imbalance in diabetic patients. In this study, we addressed the impact of combined hyperlipidemia and hyperglycemia on renal pathology. Kidneys from wildtype (WT) or LDL receptor-deficient BALB/cBy mice (BALB. LDLR -/-) were examined at 22 weeks of age. Diabetes was induced by administration of streptozotocin and mice were randomly assigned to either standard chow or Western diet. Chow fed BALB. LDLR -/- mice did not demonstrate renal abnormalities, whereas BALB. LDLR -/- mice fed a Western diet showed occasional glomerular and tubulointerstitial foam cells. Diabetic WT mice had modestly increased glomerular cellularity and extracellular matrix. Hyperlipidemic and diabetic BALB. LDLR -/- mice exhibited an increase in glomerular cellularity and extracellular matrix, accumulation of glomerular and tubulointerstitial foam cells and mesangial lipid deposits. The tubular epithelium demonstrated pronounced lipid induced tubular degeneration with increased tubular epithelial cell turnover. Hyperlipidemia and hyperglycemia seem to act synergistically in inducing renal injury in the BALB. LDLR-/- mouse. This model of diabetic nephropathy is unique in its development of tubular lesions and may represent a good model for hyperlipidemia-exacerbated diabetic nephropathy. Copyright (C) 2004 S. Karger AG, Basel

    Localization of PDGF α-receptor in the developing and mature human kidney

    Get PDF
    Localization of PDGF α-receptor in the developing and mature human kidney. Using in situ hybridization and immunocytochemistry we describe the renal localization of the PDGF α-receptor. PDGF α-receptor mRNA was uniformly present in human metanephric kidney in interstitial cells and vascular arcades that course through the blastema. PDGF α-receptor mRNA was present in some mesangial structures in early glomeruli, but was largely lost as glomeruli matured. It was present in adventitial fibroblasts, but usually not in vascular smooth muscle cells or endothelial cells of the fetal vasculature. This pattern persisted in adult kidneys, with extensive expression of mRNA by interstitial cells and only occasional expression by mesangial cells. All in situ hybridization findings were corroborated by immunocytochemistry. Double immunolabeling confirmed the rare expression of the PDGF α-receptor protein by vascular smooth muscle cells and the absence of its expression by endothelial cells. Given that both PDGF A- and B-chain can promote smooth muscle cell and fibroblast migration and proliferation and that both signal through the PDGF α-receptor, these data suggest that PDGF α-receptor may play important roles in the early vasculogenesis of the fetal kidney as well as in the pathogenesis of renal interstitial fibrosis

    The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis

    Get PDF
    The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis.BackgroundDuring glomerulogenesis, visceral glomerular epithelial cells (VECs) exit the cell cycle and become terminally differentiated and quiescent. In contrast to other resident glomerular cells, VECs undergo little if any proliferation in response to injury. However, the mechanisms for this remain unclear. Cell proliferation is controlled by cell-cycle regulatory proteins where the cyclin-dependent kinase inhibitor p21Cip1,WAF1 (p21) inhibits cell proliferation and is required for differentiation of many nonrenal cell types.MethodsTo test the hypothesis that p21 is required to maintain a differentiated and quiescent VEC phenotype, experimental glomerulonephritis was induced in p21 knockout (-/-) and p21 wild-type (+/+) mice with antiglomerular antibody. DNA synthesis (proliferating cell nuclear antigen, bromodeoxyuridine staining), VEC proliferation (multilayers of cells in Bowman's space), matrix accumulation (periodic acid-Schiff, silver staining), apoptosis (TUNEL), and renal function (serum urea nitrogen) were studied on days 5 and 14 (N = 6 per time point). VECs were identified by location, morphology, ezrin staining, and electron microscopy. VEC differentiation was measured by staining for Wilms’ tumor-1 gene.ResultsKidneys from unmanipulated p21-/- mice were histologically normal and did not have increased DNA synthesis, suggesting that p21 was not required for the induction of VEC terminal differentiation. Proliferating cell nuclear antigen and bromodeoxyuridine staining was increased 4.3- and 3.3-fold, respectively, in p21-/- mice with glomerulonephritis (P < 0.0001 vs. p21+/+ mice). At each time point, VEC proliferation was also increased in nephritic p21-/- mice (P < 0.0001 vs. p21+/+ mice). VEC re-entry into the cell cycle was associated with the loss of Wilms’ tumor-1 gene staining. Nephritic p21-/- mice had increased extracellular matrix protein accumulation and apoptosis and decreased renal function (serum urea nitrogen) compared with p21+/+ mice (P < 0.001).ConclusionThese results show that the cyclin kinase inhibitor p21 is not required by VECs to attain a terminally differentiated VEC phenotype. However, the loss of p21, in disease states, is associated with VEC re-entry into the cell cycle and the development of a dedifferentiated proliferative phenotype

    Renal Proliferative and Phenotypic Changes in Rats With Two-Kidney, One-Clip Goldblatt Hypertension

    Get PDF
    Angiotensin II (All) is a vasoconstrictive peptide with hypertrophic and mitogenic effects on many cell types. Previous studies have shown that in vivo administration of All in rats results in proliferation of, and phenotypic changes in, many renal cell populations, but in doses also causing hypertension. Thus, it was not possible to differentiate nonhemodynamic from hypertensive effects of All. Therefore, we studied rats with renin-dependent, All-mediated hypertension (the two-kidney, oneclip Goldblatt model; mean systolic blood pressure 238 ± 48 ν 140 ± 6 mm Hg in sham-operated controls). The undipped kidneys, which were exposed to high blood pressure, developed significant glomerular and tubulointerstitial injury, tubulointerstitial cell proliferation, dense focal interstitial monocyte-macrophage influx, increased deposition of types I and IV collagen, as well as increased cellular expression of desmin and actin, in tubulointerstitial areas when examined at 11 weeks. In contrast, clipped kidneys, protected from hypertension but with high local renin expression, had minimal abnormalities. These studies suggest that in this model increased renin, and presumably All, does not mediate significant proliferative or phenotypic changes in the kidney in the absence of hypertension at 11 weeks. Am J Hypertens 1994;7:177-18

    A new model of renal microvascular endothelial injury

    Get PDF
    A new model of renal microvascular endothelial injury. Although the importance of injury with consequent activation of endothelium is well-recognized in diseases affecting the glomerular endothelial cell (GEN), research on GEN injury in vivo has been hampered by the lack of adequate animal models. Here we report the establishment and characterization of a new GEN injury model in rats. This model was induced by selective renal artery perfusion with anti-GEN IgG and resulted in the severe acute renal failure with marked platelet deposition and development of a thrombotic microangiopathy involving glomeruli. Peritubular capillary endothelial cells were also damaged that was associated with severe tubular necrosis. Although the glomerular changes were severe, half of the glomeruli recovered by day 10, while interstitial changes remained throughout our observation time course. Proliferation of GEN was observed during the recovery phase. An increased expression of endothelial nitric oxide synthase in GEN was also observed, and may be an adaptive mechanism to counteract the thrombosis and ischemia. This model should be useful to investigate the pathophysiology of renal microvascular diseases and the mechanisms of GEN injury, activation and recovery in vivo

    Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV

    Get PDF
    BACKGROUND: Jaagsiekte sheep retrovirus (JSRV) causes a lethal lung cancer in sheep and goats. Expression of the JSRV envelope (Env) protein in mouse lung, by using a replication-defective adeno-associated virus type 6 (AAV6) vector, induces tumors resembling those seen in sheep. However, the mouse and sheep tumors have not been carefully compared to determine if Env expression alone in mice can account for the disease features observed in sheep, or whether additional aspects of virus replication in sheep are important, such as oncogene activation following retrovirus integration into the host cell genome. RESULTS: We have generated mouse monoclonal antibodies (Mab) against JSRV Env and have used these to study mouse and sheep lung tumor histology. These Mab detect Env expression in tumors in sheep infected with JSRV from around the world with high sensitivity and specificity. Mouse and sheep tumors consisted mainly of well-differentiated adenomatous foci with little histological evidence of anaplasia, but at long times after vector exposure some mouse tumors did have a more malignant appearance typical of adenocarcinoma. In addition to epithelial cell tumors, lungs of three of 29 sheep examined contained fibroblastic cell masses that expressed Env and appeared to be separate neoplasms. The Mab also stained nasal adenocarcinoma tissue from one United States sheep, which we show was due to expression of Env from ovine enzootic nasal tumor virus (ENTV), a virus closely related to JSRV. Systemic administration of the AAV6 vector encoding JSRV Env to mice produced numerous hepatocellular tumors, and some hemangiomas and hemangiosarcomas, showing that the Env protein can induce tumors in multiple cell types. CONCLUSION: Lung cancers induced by JSRV infection in sheep and by JSRV Env expression in mice have similar histologic features and are primarily characterized by adenomatous proliferation of peripheral lung epithelial cells. Thus it is unnecessary to invoke a role for insertional mutagenesis, gene activation, viral replication, or expression of other viral gene products in sheep lung tumorigenesis, although these processes may play a role in other clinically less important sequelae of JSRV infection such as metastasis observed with variable frequency in sheep

    Report on the May-June 2002 Englebright Lake deep coring campaign

    Get PDF
    This report describes the May-June 2002 Englebright Lake coring project. Englebright Lake is a 14-km-long reservoir on the Yuba River of northern California, impounded by Englebright Dam, which was completed in 1940. The sediments were cored to assess the current conditions in the reservoir as part of the California Bay-Delta Authority’s Upper Yuba River Studies Program. Sediment was collected using both hydraulic-piston and rotational coring equipment mounted on a floating drilling platform. Thirty boreholes were attempted at 7 sites spaced along the longitudinal axis of the reservoir. Complete sedimentary sections were recovered from 20 boreholes at 6 sites. In total, 335 m of sediment was cored, with 86% average recovery. The core sections (each up to 1.5 m long) were processed using a standard set of laboratory techniques, including geophysical logging of physical properties, splitting, visual descriptions, digital photography, and initial subsampling. This report presents the results of these analyses in a series of stratigraphic columns. Using the observed stratigraphy as a guide, several series of subsamples were collected for various sedimentologic, geochemical, and geochronological analyses. The results of laboratory analyses of most of these subsamples will be presented in future reports and articles

    Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: A podocyte disease

    Get PDF
    Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: A podocyte disease. In Milan normotensive (MNS) rats glomerulosclerosis and interstitial fibrosis develop spontaneously in the absence of hypertension. Renal changes were sequentially assessed in these rats between 2 and 10 months of age. At 10 months, rats were characterized by heavy proteinuria, increased serum creatinine, focal or global glomerulosclerosis in 51 ± 12% of the glomeruli as well as tubulointerstitial injury involving > 25% of the section area. Cell injury in podocytes (evidenced as increased expression of desmin and by electron microscopy) and interstitial fibroblasts (increased expression of α-smooth muscle actin) and mild glomerular hypertrophy were witnessed as early as three to four months of age and preceded glomerulosclerosis and interstitial fibrosis. Only minor evidence of mesangial cell activation (as assessed by glomerular de novo α-smooth muscle actin or type I collagen expression or increased cell proliferation) was noted throughout the observation period. Later stages of the disease were characterized by glomerular and/or tubulointerstitial macrophage influx and osteopontin expression (a chemoattractant), mild accumulation of lymphocytes, platelets, fibrinogen, as well as by a progressive accumulation of various matrix proteins. Progressive renal disease in MNS rats is thus noteworthy for the relative lack of mesangial cell activation. Rather, early podocyte damage, induced by yet unknown mechanisms, may underlie the development of glomerulosclerosis and subsequent interstitial fibrosis

    Modulation of experimental mesangial proliferative nephritis by interferon-γ

    Get PDF
    Modulation of experimental mesangial proliferative nephritis by interferon-γ. The observation that interferon-γ (IFN-γ) inhibits cell proliferation and collagen synthesis of a variety of cell types in culture has suggested that IFN-γ may be useful in the treatment of fibroproliferative diseases. We administered recombinant IFN-γ subcutaneously (105 U/kg/day for 3 days) to rats, beginning one day after the induction of mesangial proliferative nephritis with anti-Thy 1 antibody. IFN-γ reduced glomerular (primarily mesangial) cell proliferation by 44% at days 2 and 4 compared to vehicle injected control rats with anti-Thy 1 nephritis (that is, proliferating cells that excluded the macrophage marker, ED-1, P < 0.001). Despite the inhibition of mesangial cell proliferation, IFN-γ did not reduce the overall extracellular matrix deposition (by silver stain) or deposition of type IV collagen or laminin (by immunostaining) at 4 or 7 days, and glomerular type IV collagen and laminin mRNA levels were increased (1.4 and 1.7-fold) at 4 days relative to controls. The inability of IFN-γ treatment to reduce mesangial matrix expansion may relate to the fact that IFN-γ treated rats had a twofold increase in glomerular macrophages (that is, ED-1 positive cells, P < 0.001 at 2 and 4 days) with an increase in oxidant producing cells (day 2, P < 0.05) and a 1.6-fold increase in glomerular TGF-β mRNA expression (4 days). This suggests that the effect of IFN-γ to inhibit mesangial cell proliferation in glomerulonephritis may be offset by the ability of IFN-γ to increase glomerular macrophages and TGF-β expression. These data also show that IFN-γ can partly dissociate the mesangial proliferative response from the extracellular matrix expansion in glomerulonephritis

    Sediment-Water Interactions Affecting Dissolved-Mercury Distributions in Camp Far West Reservoir, California

    Get PDF
    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial summary information (figuratively at the top of the pyramid) and the later details of methods or results (figuratively towards the base of the pyramid) using hyperlinks to supporting figures and tables, and an electronically linked Table of Contents. During two sampling events, two replicate sediment cores (Coring methods; Fig. 2) from each of three reservoir locations (Fig. 1) were used in incubation experiments to provide flux estimates and benthic biological characterizations. Incubation of these cores provided “snapshots” of solute flux across the sediment-water interface in the reservoir, under benthic, environmental conditions representative of the time and place of collection. Ancillary data, including nutrient and ligand fluxes, were gathered to provide a water-quality framework from which to compare the results for mercury
    corecore