42 research outputs found
Parallel Search with no Coordination
We consider a parallel version of a classical Bayesian search problem.
agents are looking for a treasure that is placed in one of the boxes indexed by
according to a known distribution . The aim is to minimize
the expected time until the first agent finds it. Searchers run in parallel
where at each time step each searcher can "peek" into a box. A basic family of
algorithms which are inherently robust is \emph{non-coordinating} algorithms.
Such algorithms act independently at each searcher, differing only by their
probabilistic choices. We are interested in the price incurred by employing
such algorithms when compared with the case of full coordination. We first show
that there exists a non-coordination algorithm, that knowing only the relative
likelihood of boxes according to , has expected running time of at most
, where is the expected running time of the best
fully coordinated algorithm. This result is obtained by applying a refined
version of the main algorithm suggested by Fraigniaud, Korman and Rodeh in
STOC'16, which was designed for the context of linear parallel search.We then
describe an optimal non-coordinating algorithm for the case where the
distribution is known. The running time of this algorithm is difficult to
analyse in general, but we calculate it for several examples. In the case where
is uniform over a finite set of boxes, then the algorithm just checks boxes
uniformly at random among all non-checked boxes and is essentially times
worse than the coordinating algorithm.We also show simple algorithms for Pareto
distributions over boxes. That is, in the case where for
, we suggest the following algorithm: at step choose uniformly
from the boxes unchecked in ,
where . It turns out this algorithm is asymptotically
optimal, and runs about times worse than the case of full coordination
Diagnostic accuracy of a noninvasive hepatic ultrasound score for non-alcoholic fatty liver disease (NAFLD) in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
CONTEXT AND OBJECTIVE: Noninvasive strategies for evaluating non-alcoholic fatty liver disease (NAFLD) have been investigated over the last few decades. Our aim was to evaluate the diagnostic accuracy of a new hepatic ultrasound score for NAFLD in the ELSA-Brasil study.DESIGN AND SETTINGS: Diagnostic accuracy study conducted in the ELSA center, in the hospital of a public university.METHODS: Among the 15,105 participants of the ELSA study who were evaluated for NAFLD, 195 individuals were included in this sub-study. Hepatic ultrasound was performed (deep beam attenuation, hepatorenal index and anteroposterior diameter of the right hepatic lobe) and compared with the hepatic steatosis findings from 64-channel high-resolution computed tomography (CT). We also evaluated two clinical indices relating to NAFLD: the fatty liver index (FLI) and the hepatic steatosis index (HSI).RESULTS: Among the 195 participants, the NAFLD frequency was 34.4%. High body mass index, high waist circumference, diabetes and hypertriglyceridemia were associated with high hepatic attenuation and large anteroposterior diameter of the right hepatic lobe, but not with the hepatorenal index. The hepatic ultrasound score, based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe, presented the best performance for NAFLD screening at the cutoff point ≥ 1 point; sensitivity: 85.1%; specificity: 73.4%; accuracy: 79.3%; and area under the curve (AUC 0.85; 95% confidence interval, CI: 0.78-0.91)]. FLI and HSI presented lower performance (AUC 0.76; 95% CI: 0.69-0.83) than CT.CONCLUSION: The hepatic ultrasound score based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe has good reproducibility and accuracy for NAFLD screening
Anticipated resource utilization for injury versus non-injury pediatric visits to emergency departments
BACKGROUND: Childhood injuries are increasingly treated in emergency departments (EDs) but the relationship between injury severity and ED resource utilization has not been evaluated. The objective of this study was to compare resource utilization for pediatric injury-related ED visits across injury-severity levels and with non-injury visits, using standardized, validated scales. METHODS: A retrospective analysis of 2004-2008 ED visits from the Pediatric Emergency Care Applied Research Network Core Data Project. Maximum Abbreviated Injury Scale severity (MAIS) and Severity Classification System (SCS) scores were calculated and compared. MAIS and SCS are ordinal scales from 1 (minor injury) to 6, and 1 (low anticipated resource utilization) to 5, respectively. ED length of stay (LOS) and admission percentages were calculated as comparative proxy measures of resource utilization. RESULTS: There were 763,733 injury visits and 2,328,916 non-injury visits, most with SCS of 2 or 3. Of the injured patients, 59.2Â % had an MAIS of 1. ED LOS and admission percentage increased with increasing MAIS from 1-5. LOS and admission percentage increased with increasing SCS in both samples. Median LOS was shorter for injured versus non-injured patients with SCS 3-5. Non-injured patients with SCS 2-5 were more likely admitted than injured patients. Most injured patients had an SCS 3 with an MAIS 1-2, or an SCS 2 with an MAIS 1, with no correlation between the two scales. CONCLUSION: While admission rates and LOS increase with increasing AIS and SCS severity, these two classification schemas do not reliably correlate. Similarly, ED visit metrics differ between injured and non-injured patients in similar SCS categories. Although AIS and SCS both have value, these differences should be considered when using these schemas in research and quality improvement