33 research outputs found

    Acaricides resistance in ticks : selection, diagnosis, mechanisms, and mitigation

    Get PDF
    Ticks are blood-feeding ecto-parasites that have a cosmopolitan distribution in tropical and subtropical regions of the world. Ticks cause economic losses in the form of reduced blood, meat and dairy products, as well as pathogen transmission. Different acaricides such as organochlorines, organophosphates, formamidines (e.g. amitraz), synthetic pyrethroids, macrocyclic lactones, fipronil, and fluazuron are currently used sequentially or simultaneously to control tick infestations. Most acaricide treatments now face increasingly high chances of failure, due to the resistance selection in different tick populations against these drugs. Acaricide resistance in ticks can be developed in different ways, including amino acid substitutions that result in morphological changes in the acaricide target, metabolic detoxification, and reduced acaricide entry through the outer layer of the tick body. The current literature brings a plethora of information regarding the use of different acaricides for tick control, resistance selection, analysis of mutations in target sites, and resistance mitigation. Alternatives such as synergistic use of different acaricides, plant-derived phytochemicals, fungi as biological control agents, and anti-tick vaccines have been recommended to avoid and mitigate acaricide resistance. The purpose of this review was to summarize and discuss different acaricides applied for tick control, their mechanisms of action and resistance selection, genetic polymorphisms in their target molecules, as well as the approaches used for diagnosis and mitigation of acaricide resistance, specifically in Rhipicephalus microplus ticks

    First report on tick-borne pathogens detected in ticks infesting stray dogs near butcher shops

    Get PDF
    Public health is a major concern for several developing countries due to infectious agents transmitted by hematophagous arthropods such as ticks. Health risks due to infectious agents transmitted by ticks infesting butcher-associated stray dogs (BASDs) in urban and peri-urban regions have been neglected in several developing countries. To the best of the authors’ knowledge, this is the first study assessing public health risks due to ticks infesting BASDs in Pakistan’s urban and peri-urban areas. A total of 575 ticks (390 from symptomatic and 183 from asymptomatic BASDs) were collected from 117 BASDs (63 symptomatic and 54 asymptomatic); the ticks belonged to 4 hard tick species. A subset of each tick species’ extracted DNA was subjected to polymerase chain reaction (PCR) to amplify the 16S rDNA and cox1 sequences of the reported tick species, as well as bacterial and protozoal agents. The ticks’ 16S rDNA and cox1 sequences showed 99–100% identities, and they were clustered with the sequence of corresponding species from Pakistan and other countries in phylogenetic trees. Among the screened 271 ticks’ DNA samples, Anaplasma spp. was detected in 54/271 (19.92%) samples, followed by Ehrlichia spp. (n = 40/271, 14.76%), Rickettsia spp. (n = 33/271, 12.17%), Coxiella spp. (n = 23/271, 4.48%), and Hepatozoon canis (n = 9/271, 3.32%). The obtained sequences and phylogenetic analyzes revealed that the pathogens detected in ticks were Ehrlichia minasensis, Ehrlichia sp., Hepatozoon canis, Coxiella burnetii, Coxiella sp., Anaplasma capra, Anaplasma platys, Anaplasma sp., Rickettsia massiliae, “Candidatus Rickettsia shennongii” and Rickettsia aeschlimannii. Tick-borne pathogens such as E. minasensis, H. canis, A. capra, A. platys, and R. aeschlimannii, were detected based on the DNA for the first time in Pakistan. This is the first report on public health risks due to ticks infesting BASDs. These results not only provided insights into the occurrence of novel tick-borne pathogens in the region but also revealed initial evidence of zoonotic threats to both public health and domestic life

    Prediction of novel drug targets and vaccine candidates against human lice (insecta), acari (Arachnida), and their associated pathogens

    Get PDF
    The emergence of drug-resistant lice, acari, and their associated pathogens (APs) is associated with economic losses; thus, it is essential to find new appropriate therapeutic approaches. In the present study, a subtractive proteomics approach was used to predict suitable therapeutics against these vectors and their infectious agents. We found 9701 proteins in the lice (Pediculus humanus var. corporis) and acari (Ixodes scapularis, Leptotrombidium deliense), and 4822 proteins in the proteomes of their APs (Babesia microti, Borreliella mayonii, Borrelia miyamotoi, Borrelia recurrentis, Rickettsia prowazekii, Orientia tsutsugamushi str. Boryong) that were non-homologous to host proteins. Among these non-homologous proteins, 365 proteins of lice and acari, and 630 proteins of APs, were predicted as essential proteins. Twelve unique essential proteins were predicted to be involved in four unique metabolic pathways of lice and acari, and 103 unique proteins were found to be involved in 75 unique metabolic pathways of APs. The sub cellular localization analysis of 115 unique essential proteins of lice and acari and their APs revealed that 61 proteins were cytoplasmic, 42 as membrane-bound proteins and 12 proteins with multiple localization. The druggability analysis of the identified 73 cytoplasmic and multiple localization essential proteins revealed 22 druggable targets and 51 novel drug targets that participate in unique pathways of lice and acari and their APs. Further, the predicted 42 membrane bound proteins could be potential vaccine candidates. Screening of useful inhibitors against these novel targets may result in finding novel compounds efficient for the control of these parasites

    H-IPSE is a pathogen-secreted host nucleus infiltrating protein (infiltrin) expressed exclusively by the Schistosoma haematobium egg stage

    Get PDF
    Urogenital schistosomiasis, caused by the parasitic trematode Schistosoma haematobium, affects over 112 million people worldwide. As with S. mansoni infections, the pathology in urogenital schistosomiasis is mainly related to the egg stage, which induces granulomatous inflammation of affected tissues. Schistosoma eggs and their secretions have been studied extensively for the related S. mansoni organism which is more amenable to laboratory studies. Indeed, we have shown that IPSE/alpha-1 (M-IPSE herein), a major protein secreted from S .mansoni eggs, can infiltrate host cells. Although M-IPSE function is unknown, its ability to translocate to their nucleus and bind DNA suggests a possible role in immune modulation of host cell tissues. Whether IPSE homologs are expressed in other Schistosome species has not been investigated. Here, we describe the cloning of two paralog genes H03-IPSE and H06-IPSE which are the ortholog of M-IPSE, from the egg-cDNA of S. haematobium. Using PCR and immunodetection, we confirmed that expression of these genes is restricted to the egg stage and female adult worms, while H-IPSE protein is only detectable in mature eggs but not adults. We show that both H03-IPSE and H06-IPSE proteins can infiltrate HTB-9 bladder cells when added exogenously to culture medium. Monopartite C-terminal NLS motifs conserved in H03-IPSE ‘SKRRRKY’ and H06-IPSE ‘SKRGRKY’ NLS motifs, are responsible for targeting the proteins to the nucleus of HTB-9 cells, as demonstrated by site directed mutagenesis and GFP tagging. Thus, S. haematobium eggs express IPSE homologs that appear to perform similar functions in infiltrating host cells

    Viral RNA Metagenomics of Hyalomma Ticks Collected from Dromedary Camels in Makkah Province, Saudi Arabia

    Get PDF
    Arthropod-borne infections are a medical and economic threat to humans and livestock. Over the last three decades, several unprecedented viral outbreaks have been recorded in the Western part of the Arabian Peninsula. However, little is known about the circulation and diversity of arthropod-borne viruses in this region. To prepare for new outbreaks of vector-borne diseases, it is important to detect which viruses circulate in each vector population. In this study, we used a metagenomics approach to characterize the RNA virome of ticks infesting dromedary camels (Camelus dromedaries) in Makkah province, Saudi Arabia. Two hundred ticks of species Hyalomma dromedarii (n = 196) and Hyalomma impeltatum (n = 4) were collected from the Alkhurma district in Jeddah and Al-Taif city. Virome analysis showed the presence of several tick-specific viruses and tick-borne viruses associated with severe illness in humans. Some were identified for the first time in the Arabian Peninsula. The human disease-associated viruses detected included Crimean Congo Hemorrhagic fever virus and Tamdy virus (family Nairoviridae), Guertu virus (family Phenuiviridae), and a novel coltivirus that shares similarities with Tarumizu virus, Tai forest reovirus and Kundal virus (family Reoviridae). Furthermore, Alkhurma hemorrhagic virus (Flaviviridae) was detected in two tick pools by specific qPCR. In addition, tick-specific viruses in families Phenuiviridae (phleboviruses), Iflaviridae, Chuviridae, Totiviridae and Flaviviridae (Pestivirus) were detected. The presence of human pathogenetic viruses warrants further efforts in tick surveillance, xenosurveillence, vector control, and sero-epidemiological investigations in human and animal populations to predict, contain and mitigate future outbreaks in the region

    Neuroimmunopathology in Toxoplasmic Encephalitis

    Get PDF
    Toxoplasma gondii is a zoonotic protozoan parasite that causes mortality because of significant neuropathology. It is widespread in neonatal infections. Although the neuroimmunopathogenesis of toxoplasmic encephalitis (TE) has been studied for many years, it is still not completely understood, showing the disease’s severity. The urge to write this chapter comes at this stage. The sections covered in this chapter show the pathogenesis that has been established and characterized so far. The involvement of astrocytes and microglia in the development of neuropathology, which begins with tachyzoites crossing the blood-brain barrier during acute infection, has been explored. The molecular mechanism between schizophrenia and TE has been thoroughly proven. Uncovering the molecular pathogenesis of TE is critical for both understanding neuropathology and elucidating the link between neuropsychiatric diseases. Each part covered here is expected to contribute to developing novel therapeutic agents for the treatment and maybe prevention of neuropathology. The pathogenesis of the steady progression of encephalitis has been meticulously revealed. Thus, this chapter will offer significant insight into developing novel treatments for all organisms suffering from this disease

    Host immune responses to salivary components : a critical facet of tick-host interactions

    Get PDF
    Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick’s blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts’ defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick’s salivary immunomodulatory and cement proteins facilitate the tick’s attachment to the host to enhance prolonged bloodfeeding and to modulate the host’s innate and adaptive immune responses. Recent advances implemented in the field of “omics” have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick–host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics

    Low genetic polymorphism in the immunogenic sequences of Rhipicephalus microplus clade C

    Get PDF
    Rhipicephalus microplus tick highly affects the veterinary sector throughout the world. Different tick control methods have been adopted, and the identification of tick-derived highly immunogenic sequences for the development of an anti-tick vaccine has emerged as a successful alternate. This study aimed to characterize immunogenic sequences from R. microplus ticks prevalent in Pakistan. Ticks collected in the field were morphologically identified and subjected to DNA and RNA extraction. Ticks were molecularly identified based on the partial mitochondrial cytochrome C oxidase subunit (cox) sequence and screened for piroplasms (Theileria/Babesia spp.), Rickettsia spp., and Anaplasma spp. PCR-based pathogens-free R. microplus-derived cDNA was used for the amplification of full-length cysteine protease inhibitor (cystatin 2b), cathepsin L-like cysteine proteinase (cathepsin-L), glutathione S-transferase (GST), ferritin 1, 60S acidic ribosomal protein (P0), aquaporin 2, ATAQ, and R. microplus 05 antigen (Rm05Uy) coding sequences. The cox sequence revealed 100% identity with the nucleotide sequences of Pakistan’s formerly reported R. microplus, and full-length immunogenic sequences revealed maximum identities to the most similar sequences reported from India, China, Cuba, USA, Brazil, Egypt, Mexico, Israel, and Uruguay. Low nonsynonymous polymorphisms were observed in ATAQ (1.5%), cathepsin-L (0.6%), and aquaporin 2 (0.4%) sequences compared to the homologous sequences from Mexico, India, and the USA, respectively. Based on the cox sequence, R. microplus was phylogenetically assembled in clade C, which includes R. microplus from Pakistan, Myanmar, Malaysia, Thailand, Bangladesh, and India. In the phylogenetic trees, the cystatin 2b, cathepsin-L, ferritin 1, and aquaporin 2 sequences were clustered with the most similar available sequences of R. microplus, P0 with R. microplus, R. sanguineus and R. haemaphysaloides, and GST, ATAQ, and Rm05Uy with R. microplus and R. annulatus. This is the first report on the molecular characterization of clade C R. microplus-derived immunogenic sequences

    Molecular detection of Rickettsia hoogstraalii in Hyalomma anatolicum and Haemaphysalis sulcata : updated knowledge on the epidemiology of tick-borne Rickettsia hoogstraalii

    Get PDF
    Ticks are hematophagous ectoparasites that transmit pathogens to animals and humans. Updated knowledge regarding the global epidemiology of tick-borne Rickettsia hoogstraalii is dispersed, and its molecular detection and genetic characterization are missing in Pakistan. The current study objectives were to molecularly detect and genetically characterize Rickettsia species, especially R. hoogstraalii, in hard ticks infesting livestock in Pakistan, and to provide updated knowledge regarding their global epidemiology. Ticks were collected from livestock, including goats, sheep, and cattle, in six districts of Khyber Pakhtunkhwa (KP) Pakistan. Overall, 183 hosts were examined, of which 134 (73.2%), including goats (number = 39/54, 72.2%), sheep (23/40, 57.5%), and cattle (71/89, 80%) were infested by 823 ticks. The most prevalent tick species was Rhipicephalus microplus (number = 283, 34.3%), followed by Hyalomma anatolicum (223, 27.0%), Rhipicephalus turanicus (122, 14.8%), Haemaphysalis sulcata (104, 12.6%), Haemaphysalis montgomeryi (66, 8.0%), and Haemaphysalis bispinosa (25, 3.03%). A subset of 210 ticks was selected and screened for Rickettsia spp. using PCRbased amplification and subsequent sequencing of rickettsial gltA and ompB fragments. The overall occurrence rate of R. hoogstraalii was 4.3% (number = 9/210). The DNA of Rickettsia was detected in Hy. anatolicum (3/35, 8.5%) and Ha. sulcata (6/49, 12.2%). However, no rickettsial DNA was detected in Rh. microplus (35), Rh. turanicus (35), Ha. montgomeryi (42), and Ha. bispinosa (14). The gltA and ompB fragments showed 99–100% identity with R. hoogstraalii and clustered phylogenetically with the corresponding species from Pakistan, Italy, Georgia, and China. R. hoogstraalii was genetically characterized for the first time in Pakistan and Hy. anatolicum globally. Further studies should be encouraged to determine the role of ticks in the maintenance and transmission of R. hoogstraalii in different hosts
    corecore