42,526 research outputs found

    Multi-ion sensing of dipolar noise sources in ion traps

    Full text link
    Trapped-ion quantum platforms are subject to `anomalous' heating due to interactions with electric-field noise sources of nature not yet completely known. There is ample experimental evidence that this noise originates at the surfaces of the trap electrodes, and models assuming fluctuating point-like dipoles are consistent with observations, but the exact microscopic mechanisms behind anomalous heating remain undetermined. Here we show how a two-ion probe displays a transition in its dissipation properties, enabling experimental access to the mean orientation of the dipoles and the spatial extent of dipole-dipole correlations. This information can be used to test the validity of candidate microscopic models, which predict correlation lengths spanning several orders of mag- nitude. Furthermore, we propose an experiment to measure these effects with currently-available traps and techniques

    Monte Carlo study of the spin-glass phase of the site-diluted dipolar Ising model

    Get PDF
    By tempered Monte Carlo simulations, we study site-diluted Ising systems of magnetic dipoles. All dipoles are randomly placed on a fraction x of all L^3 sites of a simple cubic lattice, and point along a given crystalline axis. For x_c< x<=1, where x_c = 0.65, we find an antiferromagnetic phase below a temperature which vanishes as x tends to x_c from above. At lower values of x, we find an equilibrium spin-glass (SG) phase below a temperature given by k_B T_{sg} = x e_d, where e_d is a nearest neighbor dipole-dipole interaction energy. We study (a) the relative mean square deviation D_q^2 of |q|, where q is the SG overlap parameter, and (b) xi_L/L, where xi_L is a correlation length. From their variation with temperature and system size, we determine T_{sg}. In the SG phase, we find (i) the mean values and decrease algebraically with L as L increases, (ii) double peaked, but wide, distributions of q/ appear to be independent of L, and (iii) xi_L/L rises with L at constant T, but extrapolations to 1/L -> 0 give finite values. All of this is consistent with quasi-long-range order in the SG phase.Comment: 15 LaTeX pages, 15 figures, 3 tables. (typos fixed in Appendix A

    Critical point symmetries in boson-fermion systems. The case of shape transition in odd nuclei in a multi-orbit model

    Get PDF
    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model (E(5/12)) to describe odd nuclei at the critical point in the transition from the spherical to γ\gamma-unstable behaviour. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single particle orbitals j=1/2,3/2,5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the Interacting Boson Fermion Model, with a boson-fermion Hamiltonian that describes the same physical situation.Comment: Phys. Rev. Lett. (in press

    Reply to Comment on "Magnetization Process of Single Molecule Magnets at Low Temperatures"

    Full text link
    This is the reply to a Comment by I.S.Tupitsyn and P.C.E. Stamp (PRL v92,119701 (2004)) on a letter of ours (J.F.Fernandez and J.J.Alonso, PRL v91, 047202 (2003)).Comment: 2 LaTeX pages, 1 eps figure. Submitted to PRL on 20 October 200

    Encoding algebraic power series

    Full text link
    Algebraic power series are formal power series which satisfy a univariate polynomial equation over the polynomial ring in n variables. This relation determines the series only up to conjugacy. Via the Artin-Mazur theorem and the implicit function theorem it is possible to describe algebraic series completely by a vector of polynomials in n+p variables. This vector will be the code of the series. In the paper, it is then shown how to manipulate algebraic series through their code. In particular, the Weierstrass division and the Grauert-Hironaka-Galligo division will be performed on the level of codes, thus providing a finite algorithm to compute the quotients and the remainder of the division.Comment: 35 page

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres
    corecore