38,783 research outputs found
Recommended from our members
Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
The paradigm shift in energy generation towards microgrid-based architectures is changing the landscape of the energy control structure heavily in distribution systems. More specifically, distributed generation is deployed in the network demanding decentralised control mechanisms to ensure reliable power system operations. In this work, a Multi-Agent Reinforcement Learning approach is proposed to deliver an agentbased solution to implement load frequency control without the need of a centralised authority. Multi-Agent Deep Deterministic Policy Gradient is used to approximate the frequency control at the primary and the secondary levels. Each generation unit is represented as an agent that is modelled by a Recurrent Neural Network. Agents learn the optimal way of acting and interacting with the environment to maximise their long term performance and to balance generation and load, thus restoring frequency. In this paper we prove using three test systems, with two, four and eight generators, that our Multi-Agent Reinforcement Learning approach can efficiently be used to perform frequency control in a decentralised way
Distinguishing between Neutrinos and time-varying Dark Energy through Cosmic Time
We study the correlations between parameters characterizing neutrino physics
and the evolution of dark energy. Using a fluid approach, we show that
time-varying dark energy models exhibit degeneracies with the cosmic neutrino
background over extended periods of the cosmic history, leading to a degraded
estimation of the total mass and number of species of neutrinos. We investigate
how to break degeneracies and combine multiple probes across cosmic time to
anchor the behaviour of the two components. We use Planck CMB data and BAO
measurements from the BOSS, SDSS and 6dF surveys to present current limits on
the model parameters, and then forecast the future reach from the CMB Stage-4
and DESI experiments. We show that a multi-probe analysis of current data
provides only marginal improvement on the determination of the individual
parameters and no reduction of the correlations. Future observations will
better distinguish the neutrino mass and preserve the current sensitivity to
the number of species even in case of a time-varying dark energy component.Comment: 10 pages, 7 figures, minor updates to match the version accepted by
Phys. Rev.
Towards active microfluidics: Interface turbulence in thin liquid films with floating molecular machines
Thin liquid films with floating active protein machines are considered.
Cyclic mechanical motions within the machines, representing microscopic
swimmers, lead to molecular propulsion forces applied to the air-liquid
interface. We show that, when the rate of energy supply to the machines exceeds
a threshold, the flat interface becomes linearly unstable. As the result of
this instability, the regime of interface turbulence, characterized by
irregular traveling waves and propagating machine clusters, is established.
Numerical investigations of this nonlinear regime are performed. Conditions for
the experimental observation of the instability are discussed.Comment: 9 pages, 8 figures, RevTeX, submitted to Physical Review
Time relaxation of interacting single--molecule magnets
We study the relaxation of interacting single--molecule magnets (SMMs) in
both spatially ordered and disordered systems. The tunneling window is assumed
to be, as in Fe8, much narrower than the dipolar field spread. We show that
relaxation in disordered systems differs qualitatively from relaxation in fully
occupied cubic and Fe_8 lattices. We also study how line shapes that develop in
''hole--digging'' experiments evolve with time t in these fully occupied
lattices. We show (1) that the dipolar field h scales as t^p in these hole line
shapes and show (2) how p varies with lattice structure. Line shapes are not,
in general, Lorentzian. More specifically, in the lower portion of the hole,
they behave as (h/t^p)^{(1/p)-1} if h is outside the tunnel window. This is in
agreement with experiment and with our own Monte Carlo results.Comment: 21 LaTeX pages, 6 eps figures. Submitted to PRB on 15 June 2005.
Accepted on 13 August 200
- …