6 research outputs found

    Toxicidad aguda del herbicida N-(fosfonometil) glicina sobre representantes planctónicos Artemia franciscana y Microcystis aeruginosa

    No full text
    Continuous exposure to N-(phosphonomethyl) glycine (glyphosate) produces alterations on aquatic ecosystems, depending on the species or organism, concentration and exposure time. The aim of this research was to evaluate the median lethal concentration (LC50(24)) in Artemia franciscana, as well as the median population inhibitory concentration (IC50) and the coefficient of form (CF) in the cyanobacterium Microcystis aeruginosa in aquatic ecosystems. The results for A. franciscana were an LC50(24) 0.31 mg L-1, and on M. aeruginosa of an IC50(72) 53.95 mg L-1. About the study of the coefficient of form, in the control cells of M. aeruginosa it resulted in a CF≈1, while exposed to 72h-NOEC (No Observable Effect Concentration) was 2.95 mg L-1. The IC50(72) was 53.95 mg L-1 indicating that the cells remain spherical, however, there are significant changes in their volume and the cell surface exposed to IC50(72) of 7.69 ± 1.69 µm3 with 33% volume reduction compared to the control cell, which reflects the ecotoxicological dangers of this herbicide. Exposure to glyphosate resulted as category I (highly toxic) in A. franciscana and category II (toxic) in M. aeruginosa, according to the classification of the United States Environmental Protection Agency (U.S. EPA).En los ecosistemas acuáticos se producen alteraciones cuando de forma continua están expuestos al N-(fosfonometil) glicina (glifosato), especies susceptibles a un determinado grado de concentración y tiempo de exposición a este compuesto químico. El objetivo del trabajo fue evaluar la concentración letal media (CL50(24)) en Artemia franciscana, así como la concentración inhibitoria media poblacional (CI50) y el coeficiente de forma (CF) en la cianobacteria Microcystis aeruginosa en ecosistemas acuáticos. Los resultados para A. franciscana fueron de una CL50(24) 0.31 mg L-1; y sobre M. aeruginosa de una CI50(72) 53.95 mg L-1. En cuanto al estudio del coeficiente de forma, en las células control de M. aeruginosa resultó en un CF≈1, mientras que expuestas a 72h-NOEC (Concentración sin Efecto Observable) fue de 2.95 mg L-1. La CI50(72) fue de 53.95 mg L-1 indicando que las células se mantienen esféricas, sin embargo, hay cambios significativos en su volumen y superficie celular en la CI50(72) de 7.69 ± 1.69 µm3 con un 33% en reducción de volumen comparada con la célula control, lo que refleja los peligros ecotoxicológicos de este herbicida. La exposición al glifosato resultó de categoría I (altamente tóxica) en A. franciscana y categoría II (tóxica) en M. aeruginosa, de acuerdo con la clasificación de la Agencia de Protección Ambiental de los Estados Unidos (U.S. EPA)

    Mecanismos de resistencia a metales tóxicos (Cd) bajo variaciones abióticas en microalgas

    No full text
    In aquatic ecosystems, the presence of certain metals (Cu, Zn, and Fe) at trace concentrations are essential for different biological activities. However, other metals such as Cd and Pb considered toxic at very low concentrations and do not participate as micronutrients. These metals interact with essential components through ionic and covalent bonds inducing oxidative stress, replacement of essential cations, etc. Likewise, these metals have the capacity to accumulate and biomagnified along the trophic chain, promoting high sensitivity in most aquatic organisms, while others, such as microalgae have developed a variety of detoxification strategies to minimize the toxic effects of metals through the induction of adaptation mechanisms, and resistance that allow them to survive in these extreme environments. Therefore, it is essential to know the range of resistance mechanisms that these organisms present to the exposure of different toxic metals present in the aquatic ecosystem. Thus, the aim of this review is to identify and describe the main molecular mechanisms currently described in green microalgae involved in the toxic metals resistance in specific relation with cadmium; to report the influence that different environmental factors have on this response and episodes of co-resistance to other toxic metals.En los ecosistemas acuáticos, la presencia de ciertos metales (Cu, Zn, Fe) a concentraciones traza son esenciales para distintas actividades biológicas. Sin embargo, otros metales como el Cd y Pb son considerados tóxicos a concentraciones muy bajas y no participan como micronutrientes. Estos metales interactúan con componentes esenciales a través de enlaces iónicos y covalentes induciendo estrés oxidativo, reemplazo de cationes esenciales, etc. Asimismo, presentan la capacidad de acumularse y biomagnificarse a lo largo de la cadena trófica, promoviendo alta sensibilidad en la mayoría de los organismos acuáticos, mientras que otros como las microalgas, han desarrollado una gran variedad de estrategias de detoxificación para minimizar los efectos tóxicos de los metales a través de la inducción de mecanismos de adaptación y resistencia que les permiten la supervivencia a esos ambientes extremos. Por ende, es indispensable conocer la gama de mecanismos de resistencia que estos organismos presentan a la exposición de metales tóxicos presentes en el ecosistema acuático. Así, los objetivos de esta revisión son: identificar y describir los principales mecanismos moleculares actualmente descritos en microalgas verdes implicados en la resistencia a metales tóxicos en relación específica con el cadmio; dar a conocer la influencia de distintos factores ambientales sobre esta respuesta y los episodios de corresistencia hacia otros metales de carácter tóxico

    Mecanismos de resistencia a Metales tóxicos (CD) bajo variaciones abióticas en Microalgas

    No full text
    En los ecosistemas acuáticos, la presencia de ciertos metales (Cu, Zn, Fe) a concentraciones traza son esencialespara distintas actividades biológicas. Sin embargo, otros metales como el Cd y Pb son considerados tóxicos aconcentraciones muy bajas y no participan como micronutrientes. Estos metales interactúan con componentesesenciales a través de enlaces iónicos y covalentes induciendoestrés oxidativo, reemplazo de cationes esenciales,etc. Asimismo, presentan la capacidad de acumularse y biomagnificarse a lo largo de la cadena trófica, promoviendoalta sensibilidad en la mayoría de los organismos acuáticos, mientras que otros como las microalgas, han desarrolladouna gran variedad de estrategias de detoxificación para minimizar los efectos tóxicos de losmetales a través de lainducción de mecanismos de adaptación y resistencia que les permiten la supervivencia a esos ambientes extremos.Por ende, es indispensable conocer la gama de mecanismos de resistencia que estos organismos presentan a laexposición de metales tóxicos presentes en el ecosistema acuático. Así, los objetivos de esta revisión son: identificary describir los principales mecanismos moleculares actualmente descritos en microalgas verdes implicados en laresistencia a metales tóxicos en relación específica con el cadmio; dar a conocer la influencia de distintos factoresambientales sobre esta respuesta y los episodios de corresistencia hacia otros metales de carácter tóxico

    Evolution in the photosynthetic oxygen rate of a Cd-resistant strain of Dictyosphaerium chlorelloides by changes in light intensity and temperature

    No full text
    Environmental factors such as temperature and light are the most determinants in the photosynthetic productivity in microalgae. However, under extreme of these conditions, certain resistant microalgae strains possess additional abilities such as growth in the presence of high concentrations of metals and some can improve in combinations of more than one abiotic stress. Therefore, the aim of this research was to evaluate the efficiency in photosynthetic production through the oxygen balance to variations in photon intensity, and under temperature changes in a Cd-resistant strain (DcRCd100) compared to the wild-type strain (Dc1Mwt) of Dictyosphaerium chlorelloides. The results showed that the DcRCd100 strain has the maximum efficiency at 200  μmol m−2 s−1 on photosynthesis net (Pn) (96.32 ± 3.63% nmol O2 ml−1 min−1) as the threshold light saturation, and an adaptation to maintain this maximum photosynthetic gross (Pg) rate at 30 °C (94.99 ± 10.03% nmol O2 ml−1 min−1) due to possible modifications in the photosynthetic apparatus that is reflected in the net evolution rate of O2 to deal with such evaluated conditions. While, Dc1Mwt strain its maximum photosynthetic efficiency was at 300 μmol m−2 s−1 and 21 °C (97.72 ± 2.99 and 99.85 ± 0.30%nmol O2 ml−1 min−1, respectively) and in optimal response to the oxygen balance that is normally achieved by this mesophilic genus. These results provide a new prediction of mechanisms in the oxygen evolution in photosynthesis that rules the correlation between resistance and adaptation to extreme abiotic conditions in metal resistant strains of eukaryotic microalgae.Mexican National Council for Science and TechnologyMexican University the BeneméritaUniversidad Complutense de MadridCentenaria Universidad Michoacana de San Nicolás de Hidalgo (México)Sección Deptal. de Farmacología y Toxicología (Veterinaria)Fac. de VeterinariaTRUEpu

    Using single-species and algal communities to determine long-term adverse effects of silver nanoparticles on freshwater phytoplankton

    No full text
    CRediT authorship contribution statement: A.A. Cortes-Tellez: Writing – original draft, Visualization, Investigation, Formal analysis. A. D’ors: Visualization, Investigation, Formal analysis. C. Fajardo: Visualization, Supervision, Investigation. G. Mengs: Software, Investigation. M. Nande: Software, Investigation. C. Martín: Visualization, Investigation. G. Costa: Visualization, Investigation. M. Martín: Visualization, Supervision, Investigation, Funding acquisition. M.C. Bartolome-Camacho: Writing – original draft, Supervision, Investigation. S. Sanchez-Fortún: Writing – original draft, Investigation, Formal analysis.The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.Ministerio de Ciencia, Innovación y Universidades (España)Sección Deptal. de Fisiología (Veterinaria)Depto. de Farmacología y ToxicologíaDepto. de Bioquímica y Biología MolecularFac. de VeterinariaTRUEpu
    corecore