4 research outputs found

    New bone formation using antibiotic-loaded calcium sulfate beads in bone transports for the treatment of long-bone osteomyelitis

    Get PDF
    Purpose Bone transport is one of the most frequently used techniques for critical-sized bone defects due to trauma or infection. To fill the defect area and avoid the collapse of soft tissues during transport, some authors have described the use of polymethylmethacrylate or absorbable antibiotic carriers in the form of cylindrical blocks. Methods In this article, we present our experience in the treatment of post-traumatic osteomyelitis of the lower and upper limbs, using a bone transport technique with antibiotic-loaded calcium sulfate in the form of beads. Results With the progressive absorption of calcium sulfate, we observed the formation of a bone-like tissue envelope at the periphery of the defect area. Histological analysis and direct visualization during open revision surgery of the docking site in all patients confirmed the presence of newly formed bone tissue with a high presence of osteoblasts and few osteoclasts; no areas of necrosis or signs of infection were observed. This bone envelope maintained the mechanical protective function of the transport path and docking site, and also provided a biological stimulus to avoid the development of necrotic areas and optimize the consolidation phase. ConclusionBone transport with calcium sulfate beads improves biological and mechanical support and reduces the number of surgeries required

    Can Clinical and Surgical Parameters Be Combined to Predict How Long It Will Take a Tibia Fracture to Heal? A Prospective Multicentre Observational Study: The FRACTING Study

    Get PDF
    Background. Healing of tibia fractures occurs over a wide time range of months, with a number of risk factors contributing to prolonged healing. In this prospective, multicentre, observational study, we investigated the capability of FRACTING (tibia FRACTure prediction healING days) score, calculated soon after tibia fracture treatment, to predict healing time. Methods. The study included 363 patients. Information on patient health, fracture morphology, and surgical treatment adopted were combined to calculate the FRACTING score. Fractures were considered healed when the patient was able to fully weight-bear without pain. Results. 319 fractures (88%) healed within 12 months from treatment. Forty-four fractures healed after 12 months or underwent a second surgery. FRACTING score positively correlated with days to healing: r = 0.63 (p < 0.0001). Average score value was 7.3 \ub1 2.5; ROC analysis showed strong reliability of the score in separating patients healing before versus after 6 months: AUC = 0.823. Conclusions. This study shows that the FRACTING score can be employed both to predict months needed for fracture healing and to identify immediately after treatment patients at risk of prolonged healing. In patients with high score values, new pharmacological and nonpharmacological treatments to enhance osteogenesis could be tested selectively, which may finally result in reduced disability time and health cost savings

    Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series

    No full text
    Background: The Ilizarov external fixation technique has been widely used for the treatment of long-bone infected non-unions. After surgical infected bone resection, to allow filling of the remaining bone gap, biomaterials with antibacterial properties could be used. The aim of this study was to report outcomes of infected tibial non-unions treated using the Ilizarov technique and antibacterial bioactive glass. Methods: Between April 2009 and December 2014, 26 patients with infected tibial non-unions were treated with the Ilizarov technique and possible use of the bioactive glass, S53P4. The Association for the Study and Application of Methods of Ilizarov (ASAMI) criteria, a clinical and radiographic evaluating tool, was used for assessing the sample. Results: The average age at the start of treatment was 51 years. The mean follow-up time was 113 weeks. According to the ASAMI Functional Scoring System, 10 excellent (38.5%) cases and 12 good (46.1%) values were recorded. According to the ASAMI Radiological System, they were excellent in 16 (61.5%) cases and good in nine (34.6%). Conclusions: Treatment of infected tibial non-unions using the Ilizarov technique was effective in bone segment regeneration. To fill the remaining bone gap, additional bioactive glass S53P4 could be used, allowing a decrease in re-interventions and minimizing complications
    corecore