73 research outputs found

    Disappointing model for ultrahigh-energy cosmic rays

    Full text link
    Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) EeV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} \simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.Comment: 4 pages, 7 figures, the talk presented by A. Gazizov at NPA5 Conference, April 3-8, 2011, Eilat, Israe

    Anti-GZK effect in UHECR spectrum

    Full text link
    In this paper we discuss the anti-GZK effect that arises in the framework of the diffusive propagation of Ultra High Energy (UHE) protons. This effect consists in a jump-like increase of the maximum distance from which UHE protons can reach the observer. The position of the jump is independent of the Intergalactic Magnetic Field (IMF) strength and depends only on the energy losses of protons, namely on the transition energy from adiabatic and pair-production energy losses. The Ultra High Energy Cosmic Rays (UHECR) spectrum presents a low-energy steepening approximately at this energy, which is very close to the position of the observed second knee. The dip, seen in the universal spectrum as a signature of the proton interaction with the Cosmic Microwave Background (CMB) radiation, is also present in the case of diffusive propagation in magnetic fields.Comment: 4 pages, 4 eps figures, talk given at IFAE 2005: Incotri Fisica Alte Energie, Catania, Italy, 30 March - 2 April 200

    Superluminal problem in diffusion of relativistic particles and its phenomenological solution

    Full text link
    We discuss the superluminal problem in the diffusion of ultra high energy protons with energy losses taken into account. The phenomenological solution of this problem is found with help of the generalized J\"uttner propagator, originally proposed for relativization of the Maxwellian gas distribution. It is demonstrated that the generalized J\"uttner propagator gives the correct expressions in the limits of diffusive and rectilinear propagation of the charged particles in the magnetic fields, together with the intermediate regime, in all cases without superluminal velocities. This solution, very general for the diffusion, is considered for two particular cases: diffusion inside the stationary objects, like e.g. galaxies, clusters of galaxies etc, and for expanding universe. The comparison with the previously obtained solutions for propagation of UHE protons in magnetic fields is performed.Comment: 20 pages, 4 figures; a typo in Eq. (33) is correcte

    Ultra High Energy Cosmic Rays: The disappointing model

    Full text link
    We develop a model for explaining the data of Pierre Auger Observatory (Auger) for Ultra High Energy Cosmic Rays (UHECR), in particular, the mass composition being steadily heavier with increasing energy from 3 EeV to 35 EeV. The model is based on the proton-dominated composition in the energy range (1 - 3) EeV observed in both Auger and HiRes experiments. Assuming extragalactic origin of this component, we argue that it must disappear at higher energies due to a low maximum energy of acceleration, E_p^{\max} \sim (4 - 10) EeV. Under an assumption of rigidity acceleration mechanism, the maximum acceleration energy for a nucleus with the charge number Z is ZE_p^{\max}, and the highest energy in the spectrum, reached by Iron, does not exceed (100 - 200) EeV. The growth of atomic weight with energy, observed in Auger, is provided by the rigidity mechanism of acceleration, since at each energy E=ZE_p^{\max} the contribution of nuclei with Z' < Z vanishes. The described model has disappointing consequences for future observations in UHECR: Since average energies per nucleon for all nuclei are less than (2 - 4) EeV, (i) pion photo-production on CMB photons in extragalactic space is absent; (ii) GZK cutoff in the spectrum does not exist; (iii) cosmogenic neutrinos produced on CMBR are absent; (iv) fluxes of cosmogenic neutrinos produced on infrared - optical background radiation are too low for registration by existing detectors and projects. Due to nuclei deflection in galactic magnetic fields, the correlation with nearby sources is absent even at highest energies.Comment: Essentially revised version as published in Astropart. Physics 10 pages, 6 figure

    Diffusive propagation of UHECR and the propagation theorem

    Full text link
    We present a detailed analytical study of the propagation of ultra high energy (UHE) particles in extragalactic magnetic fields. The crucial parameter which affects the diffuse spectrum is the separation between sources. In the case of a uniform distribution of sources with a separation between them much smaller than all characteristic propagation lengths, the diffuse spectrum of UHE particles has a {\em universal} form, independent of the mode of propagation. This statement has a status of theorem. The proof is obtained using the particle number conservation during propagation, and also using the kinetic equation for the propagation of UHE particles. This theorem can be also proved with the help of the diffusion equation. In particular, it is shown numerically, how the diffuse fluxes converge to this universal spectrum, when the separation between sources diminishes. We study also the analytic solution of the diffusion equation in weak and strong magnetic fields with energy losses taken into account. In the case of strong magnetic fields and for a separation between sources large enough, the GZK cutoff can practically disappear, as it has been found early in numerical simulations. In practice, however, the source luminosities required are too large for this possibility.Comment: 16 pages, 13 eps figures, discussion of the absence of the GZK cut-off in strong magnetic field added, a misprint in figure 6 corrected, version accepted for publication in Ap
    • …
    corecore