386 research outputs found

    Suncus etruscus (Soricomorpha, Soricidae): A new species for Elba Island (Tuscan Archipelago, Italy)

    Get PDF
    The following study contains a report regarding the first record of presence of Suncus etruscus on the island of Elba. We considered original and literature data obtained from the analysis of Barn owl (Tyto alba) pellets. Three roosts located in different areas of Elba (Marciana: Colle d'Orano-Patresi; Campo nell'Elba: La Grotta; Portoferraio: Casa Rossa) have been monitored since 1968. The presence of the Pygmy white-toothed shrew has only been observed at one roost (Casa Rossa) since 2004. We performed a biometrical analysis of 15 skull characters on 67 specimens of 'S. etruscus. From the results, we conclude that a colonization of the island by S. etruscus is in progress, but long-term monitoring is needed in order to control the status of the population

    The Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.Comment: 53 pages, 15 figure

    Guaranteed clustering and biclustering via semidefinite programming

    Get PDF
    Identifying clusters of similar objects in data plays a significant role in a wide range of applications. As a model problem for clustering, we consider the densest k-disjoint-clique problem, whose goal is to identify the collection of k disjoint cliques of a given weighted complete graph maximizing the sum of the densities of the complete subgraphs induced by these cliques. In this paper, we establish conditions ensuring exact recovery of the densest k cliques of a given graph from the optimal solution of a particular semidefinite program. In particular, the semidefinite relaxation is exact for input graphs corresponding to data consisting of k large, distinct clusters and a smaller number of outliers. This approach also yields a semidefinite relaxation for the biclustering problem with similar recovery guarantees. Given a set of objects and a set of features exhibited by these objects, biclustering seeks to simultaneously group the objects and features according to their expression levels. This problem may be posed as partitioning the nodes of a weighted bipartite complete graph such that the sum of the densities of the resulting bipartite complete subgraphs is maximized. As in our analysis of the densest k-disjoint-clique problem, we show that the correct partition of the objects and features can be recovered from the optimal solution of a semidefinite program in the case that the given data consists of several disjoint sets of objects exhibiting similar features. Empirical evidence from numerical experiments supporting these theoretical guarantees is also provided

    Evolutionary history and species delimitations: a case study of the hazel dormouse, Muscardinus avellanarius

    Get PDF
    Robust identification of species and significant evolutionary units (ESUs) is essential to implement appropriate conservation strategies for endangered species. However, definitions of species or ESUs are numerous and sometimes controversial, which might lead to biased conclusions, with serious consequences for the management of endangered species. The hazel dormouse, an arboreal rodent of conservation concern throughout Europe is an ideal model species to investigate the relevance of species identification for conservation purposes. This species is a member of the Gliridae family, which is protected in Europe and seriously threatened in the northern part of its range. We assessed the extent of genetic subdivision in the hazel dormouse by sequencing one mitochondrial gene (cytb) and two nuclear genes (BFIBR, APOB) and genotyping 10 autosomal microsatellites. These data were analysed using a combination of phylogenetic analyses and species delimitation methods. Multilocus analyses revealed the presence of two genetically distinct lineages (approximately 11 % cytb genetic divergence, no nuclear alleles shared) for the hazel dormouse in Europe, which presumably diverged during the Late Miocene. The phylogenetic patterns suggests that Muscardinus avellanarius populations could be split into two cryptic species respectively distributed in western and central-eastern Europe and Anatolia. However, the comparison of several species definitions and methods estimated the number of species between 1 and 10. Our results revealed the difficulty in choosing and applying an appropriate criterion and markers to identify species and highlight the fact that consensus guidelines are essential for species delimitation in the future. In addition, this study contributes to a better knowledge about the evolutionary history of the species

    The Covering-Assignment Problem for Swarm-powered Ad-hoc Clouds: A Distributed 3D Mapping Use-case

    Full text link
    The popularity of drones is rapidly increasing across the different sectors of the economy. Aerial capabilities and relatively low costs make drones the perfect solution to improve the efficiency of those operations that are typically carried out by humans (e.g., building inspection, photo collection). The potential of drone applications can be pushed even further when they are operated in fleets and in a fully autonomous manner, acting de facto as a drone swarm. Besides automating field operations, a drone swarm can serve as an ad-hoc cloud infrastructure built on top of computing and storage resources available across the swarm members and other connected elements. Even in the absence of Internet connectivity, this cloud can serve the workloads generated by the swarm members themselves, as well as by the field agents operating within the area of interest. By considering the practical example of a swarm-powered 3D reconstruction application, we present a new optimization problem for the efficient generation and execution, on top of swarm-powered ad-hoc cloud infrastructure, of multi-node computing workloads subject to data geolocation and clustering constraints. The objective is the minimization of the overall computing times, including both networking delays caused by the inter-drone data transmission and computation delays. We prove that the problem is NP-hard and present two combinatorial formulations to model it. Computational results on the solution of the formulations show that one of them can be used to solve, within the configured time-limit, more than 50% of the considered real-world instances involving up to two hundred images and six drones

    Heuristics for optimizing 3D mapping missions over swarm-powered ad hoc clouds

    Full text link
    Drones have been getting more and more popular in many economy sectors. Both scientific and industrial communities aim at making the impact of drones even more disruptive by empowering collaborative autonomous behaviors -- also known as swarming behaviors -- within fleets of multiple drones. In swarming-powered 3D mapping missions, unmanned aerial vehicles typically collect the aerial pictures of the target area whereas the 3D reconstruction process is performed in a centralized manner. However, such approaches do not leverage computational and storage resources from the swarm members.We address the optimization of a swarm-powered distributed 3D mapping mission for a real-life humanitarian emergency response application through the exploitation of a swarm-powered ad hoc cloud. Producing the relevant 3D maps in a timely manner, even when the cloud connectivity is not available, is crucial to increase the chances of success of the operation. In this work, we present a mathematical programming heuristic based on decomposition and a variable neighborhood search heuristic to minimize the completion time of the 3D reconstruction process necessary in such missions. Our computational results reveal that the proposed heuristics either quickly reach optimality or improve the best known solutions for almost all tested realistic instances comprising up to 1000 images and fifteen drones

    On the Use of Electrooculogram for Efficient Human Computer Interfaces

    Get PDF
    The aim of this study is to present electrooculogram signals that can be used for human computer interface efficiently. Establishing an efficient alternative channel for communication without overt speech and hand movements is important to increase the quality of life for patients suffering from Amyotrophic Lateral Sclerosis or other illnesses that prevent correct limb and facial muscular responses. We have made several experiments to compare the P300-based BCI speller and EOG-based new system. A five-letter word can be written on average in 25 seconds and in 105 seconds with the EEG-based device. Giving message such as “clean-up” could be performed in 3 seconds with the new system. The new system is more efficient than P300-based BCI system in terms of accuracy, speed, applicability, and cost efficiency. Using EOG signals, it is possible to improve the communication abilities of those patients who can move their eyes

    Least squares optimization: From theory to practice

    Get PDF
    Nowadays, Nonlinear Least-Squares embodies the foundation of many Robotics and Computer Vision systems. The research community deeply investigated this topic in the last few years, and this resulted in the development of several open-source solvers to approach constantly increasing classes of problems. In this work, we propose a unified methodology to design and develop efficient Least-Squares Optimization algorithms, focusing on the structures and patterns of each specific domain. Furthermore, we present a novel open-source optimization system that addresses problems transparently with a different structure and designed to be easy to extend. The system is written in modern C++ and runs efficiently on embedded systemsWe validated our approach by conducting comparative experiments on several problems using standard datasets. The results show that our system achieves state-of-the-art performances in all tested scenarios
    corecore